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1 Introduction

The objective of this project is to analyze the effectiveness and efficiency of various
evidential reasoning paradigms. The class of problems considered, referred to as clas-
sification problems, obtain and process information to identify an object from a set
of possibilities. The information utilized in classification problems is often obtained
from mechanical sensors or human observations and thus is inherently imprecise. The
information is analyzed and used to produce measure of -upport that estimates the
likelihood of each possibility based on the accumulated evidence. Classification prob-
lems have proved to be one of the most active areas of artificial intelligence research.
Applications include diagnostic expert systems, decision analysis, and identification
problems. The motivating application of this project is the identification of radar
types based on information obtained through passive sensors.

The initial phase of the project was to examine techniques commonly employed in
artificial intelligence (AI) applications for reasoning in domains in which the available
information is incomplete and/or imprecise. The objective was to identify theoret-
ically sound reasoning paradigms and architectures for evidence driven classifica-
tion problems. The results of this study were presented in [9]. The mathematical
paradigms selected for further analysis were probabilistic reasoning using Bayesian
networks, the Dempster-Shafer theory of evidential reasoning, and fuzzy evidential
reasoning.

The second phase was to develop a tool for comparing the effectiveness of the
techniques identified in the initial analysis. During this phase, techniques and data
structures were selected for the representation of domain knowledge and the interpre-
tation of sensor data. This was followed by the design and construction of a software
tool to compare the effectiveness of the various reasoning techniques. The Generic
Classification Tool (GCT) was implemented in Common Lisp on a SUN-4 Worksta-
tion. An overview of the data structures, design, and features of the GCT is given in
Sections 2-4. A more thorough presentation of these topics can be found in [8].

Section 2 reviews the knowledge representation techniques utilized in the GCT.
An evidential reasoning system requires representations for two complementary types
of problem specific knowledge: domain knowledge and evidence. Domain knowledge
consists of the information that describes and distinguishes the alternatives. A frame-
based knowledge representation schema was chosen to represent domain information.
The characteristics of the objects are represented using partial membership functions,
the mathematical basis of fuzzy set theory. The information provided by the sensors
for the identification must be transformed into a format to be analyzed by the GCT.
Possibility distributions, the fuzzy analog of conditional probability distributions, are
used to represent imprecise sensor data.

The knowledge representation techniques provide the foundation for the analysis



of the likelihood of an object based on acquired information. Section 3 describes
the support generation techniques for each of the evidential reasoning paradigms.

The mathematical computations needed to construct the measure of support are

defined and illustrated through several examples. The representation techniques and
computational strategies described in Sections 2 and 3 are incorporated in the GCT.
The features and architecture of the GCT are presented in Section 4.

Finally, the methodology employed and results of the analysis of the reasoning
paradigms are presented. The domain knowledge bases and the evidence used in
the analysis are described in Section 5. Section 6 compares the performance of the

alternative support generation paradigms over a range of imprecise domain knowledge
and information.
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2 Knowledge Representation

In this section we review the representation of domain knowledge and evidential in-
formation. Fuzzy set theory and possibility theory were introduced by Zadeh [11] as
a mathematical formalism for representing partial set-theoretic membership. Partial
membership provides a sound mathematical foundation for representing imprecise
and uncertain information. Fuzzy set theory was chosen as the basis for the repre-
sentation of uncertainty because of its flexibility and the ability to transform fuzzy
representations into those required by probabilistic systems and Dempster-Shafer sys-
tems. Section 2.1 introduces the formal techniques used to represent the objects in the
frame of discernment. Domain knowledge is represented using a frame based structure
similar to that developed by Zadeh [13,14] for encapsulating imprecise and incomplete
domain knowledge in fuzzy relational data base systems. The GCT representation of
domain knowledge is presented in Section 4.2.

The second type of information that must be formalized is the sensor data that
drives the identification process. Possibility distributions, the fuzzy analog of con-
ditional probability distributions, provide the basis for the representation of sensor
data. Section 2.2 describes the relationship between observations and their mathemat-
ical interpretation as possibility distributions. Throughout this section, the standard
fuzzy set theoretic notation for membership functions and possibility distributions
are employed (see, for example, [2,8]).

2.1 Domain Knowledge Representation

The set of domain objects in a classification problem is known as the frame of dis-
cernment. The characteristics that describe and distinguish the elements in the frame
of discernment represent the domain knowledge of a classification problem. This in-
formation is represented using an attribute-value representation. Attributes specify
general characteristics or features of an object. Associated with each attribute is
a finite set consisting of the values that the attribute may assume. The attributes
provide the frame structure that will be used to define each of the domain objects.

Domain knowledge is represented using an attribute-value format in which the
properties of the objects are represented by partial membership functions. If domain
objects are characterized by attributes at1, ... , atk, the frame for the objects in the
domain knowledge base has the form

at,

at2

atk :

3



A particular domain object h is defined by instantiating each of the slots in the

frame with a partial membership function that describes the characteristics of the

corresponding attribute.

h (h)

at 2(h)

atk(h).

For an object h, the partial membership function Wi(h) specifies the consistency and
the compatibility of the values of the attribute ati with h. The domain of Wit(h) is
the set Vi of possible values of the attribute ati. A partial membership function for
an attribute ati with domain Vi = {vl,..., v,} is denoted

ai,(h) = x1/v1 + ... + xi/vi + ... + zn/un

where z E [0, 1]. The magnitude of z indicates the degree of compatibility of value
vi with the domain information describing h. If vi is assigned 1, then it is completely
compatible with the information describing the properties of h. Assigning 0 to vj
indicates that vi is inconsistent with the domain information describing attribute ati.
The focal set of a partial membership function is the subset of the domain whose
elements have membership value greater than 0. The focal set of ati(h) consists of
precisely the values that are consistent with the object h.

The partial membership function defined by the fuzzy set Jti(h) is often written
using the functional notation

Att(h)(Vj) = Xj.

The use of partial membership functions permits a great deal of flexibility in repre-
senting domain information. When the value of an attribute ati is known to be vj
with complete certainty for object h, the ati slot in the frame for h is instantiated
with the membership function

lltjh)X) 1 if X = vj
Iat,(h)(X) = 0 otherwise.

The membership function that assigns 1 to each of the elements in the associated set V
represents complete ignorance of the value of the attribute. The slot for attribute ati
is instantiated with this membership function when there is no information concerning
the value of ati for hypothesis h.

Two problem domains are considered throughout this report to illustrate the rep-
resentations and the computations used in the GCT. The simple domain F introdiced
in Example 1 will be used in Section 3 to demonstrate the computations requir, , I 1or
the generation of the support measures. Example 2 presents the more compli, , tA
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problem domain of representing radar types by their signal characteristics. This do-

main will be used in Section 4 to illustrate the features of the GCT.

Example 1: The domain knowledge base F consists of the four objects hl, h2, h3,
and h4. The objects in r are defined by attributes at, and at 2 that assume values in
the sets V1 = {a,b,c,d,e} and V2 = {w,x,y,z}, respectively.

r h, :t(hi) = O/a + 0.5/b + 1/c + 0.5/d + O/e
aT2(h1 ) = O/w + O/x + 1/y + 1/z

h 2 :t-(h2) = 1/a + i1 b + O/c + Old + Ole
Z(h2) = 0.5/w + 1/x + 0.5/y + Olz

h3 a, ,(h3) = O,'a + O/b + 0.5/c + IId + 0.5/e

Z(h 3 ) = 0.5/w + 0.5/x + l/y + 0.5/z

h4 : (h4) = 0/a +O/b+ 1/ + 1/d + O/e
i2(h4) = O/w + 1/x + l/y + 1/z

The partial membership function ati(hl) indicates imprecise knowledge of attribute
1 for object hl. Values b, c, and d are all consistent with the dcmain information,

but c is the most likely.

Example 2: Identifying a radar using information obtained through passive sensors
employs signal characteristics to generate the measure of support for the alternatives.

The characteristics used throughout examples in this report include radio frequency
(rf), pulse width (pw), pulse repetition interval (pri), and scan type (sc). The signal

characteristics of the emitters that comp- ise the emitter knowledge base have been
provided in terms of linguistic terms such as possible, probrble, and most likely. The
high level description of emitter type 1 is shown below.

5



Emitter type 1

Radar Frequency (RF) Details

(a) The possible limits are 2.30 - 3.47 GHz.

The probable operating limits are 2.54 - 3.24 GHz.

The most observed band limits are 2.77 - 3.00 GHz.
(b) The RF is nominally constant.

Pulse Repetition I1terval (PRI) Details

(a) The radar operates in either a constant PRI mode or a

2-element, 2-position stagger mode.

(b) In constant PRI mode, PRI limits are

(i) 90.96 - 101.27 psec
(ii) 116.87 - 133.62 psec
(iii) 179.19 - 199.22 psec

(c) In staggered mode, the PRI elements are

(i) element 1: 66.42 - 71.11 pIsec

(ii) element 2:136.36 - 157.57 jisec

or
(i) element 1: 74.76 - 107.90 psec
(ii) element 2:191.08 - 194.09 psec

Pulse Width (PW) Details
(a) The limits are 0.2 - 0.3 psec.

Scan Details
(a) The scan is either conical (CON) or bidirectional sector (BDS).

(b) The conical scan period is between 0.04 and 0.06 sec.

(c) The bidirectional scan period lies between 2.0 and 4.0 sec.

Fuzzy representation provides the ability to translate such inherently imprecise
linguistic descriptions into mathematical quantities. The frame-structure of an ele-

ment of the radar knowledge base and the details of the construction of membership
furctions are given in Section 4.2.

2.2 Evidential Representation

The identification process of evidential reasoning systems utilizes information ob-
tained from observations or sensors to generate a measure of support for each of the

6



hypotheses. The initial step in the processing of information is to transform the data
returned by the sensor into a formalism that may be employed by the GCT. The
conditional properties of possibility theory are utilized in developing an interpreta-
tion and representation of the observations that are processed by the classification
system. The precision of an observation is determined by the capabilities and accu-
racy of the sensors that produce the information. Throughout this report we make
an important distinction between observation and evidence. By observation we mean
the uninterpreted information provided by a sensor. Evidence is the interpretation of
the observation that is utilized by the reasoning system.

In the GCT, eviden-e concerning an attribute is represented as a possibility dis-
tribution over the set of possible values of the attribute. The evidential interpretation
specifies a set of values that are consistent with the observation. An observation e
that describes the properties of attribute ati will be represented by a normal pos-
sibility distribution H, over V, the set of values of ati. An evidential distribution
H1e is defined by a function 7r, from Vi into [0,1]. The distribution fI, provides the
relationship between the observation and the values of the attribute. The value ire(vj)

indicates the degree of support, based on the observation e, that the value of attribute
ati is vi.

Although they have the same mathematical form, it is important to recognize the
subtle difference between the notion of partial membership function and possibility
distribution. The value Piat,()(vj) of a partial membership function indicates the
certainty in the belief that the value of attribute ati is v3 for object h. Conversely,
the value ir,(vj) of the evidential possibility distribution H, represents the possibility
of v3 given that information e is known.

A possibility distribution IIe is an interpretation of the 'meaning' of an observation.
This may be obtained from statistical data when available. Otherwise, it may be
obtained from a subjective analysis of the problem domain and the reliability and
precision of the sensor from which observation is obtained. Information is obtained
by a mechanical sensor or a human observation that examines one characteristic
(attribute) of the unknown object. The observation can be likened to a snapshot
taken at a precise time with a single focal point. Imprecision is introduced by the
capabilities and limitations of the sensor that provides the information.

7



3 Evidential Belief Measures

The preceding section reviewed the representations of domain and evidential infor-
mation used in the GCT. The identification process is comprised of the acquisition of
information and the generation of support for the elements in the domain knowledge
base based on the acquired information. Support for the alternatives is obtained by
comparing the evidential distribution He concerning an attribute at with the partial
membership descriptions at of the domain objects. The generation of a measure of
support is a multi-step process whose computations depend on the technique em-
ployed to combine evidential support. This process can be summarized by the six
steps discussed below:

* The acquisition of information e describing the characteristics of an attribute
ati of the unknown object.

" The construction of an evidential possibility distribution He that interprets the
raw data in the observation e.

* The construction of a measure of compatibility of the elements of the frame of
discernment with the information in e. The result is a possibility distribution
H(e) over 0.

" The translation of the possibility distribution II(e) into the support measure
required by the particular reasoning paradigm.

* The combination of evidence. If el,. . . , ek are the observations that have been
obtained, the individual measures of support 11(el),..., H(ek) must be combined
to produce a measure of support based on the totality of the evidence.

" Interpreting the updated support measure to obtain a ranking of the elements
in O.

The form of the measure of support constructed in step four is determined by the
reasoning paradigm employed. For probabilistic systems, the measure of support is
a probability distribution over frame of discernment. Similarly, in fuzzy reasoning
systems the measure of support is a possibility distribution. The measure of sup-
port in a system using the Dempster-Shafer theory of evidential reasoning is a basic
probability assignment over the subsets of the frame of discernment.

The techniques used to acquire and interpret observations in the GCT are pre-
sented in Section 4. In this section we review the computations required to update
the measure of support and produce a ranking of the alternatives. The construction
of II(e) from evidence n, is identical for fuzzy analysis and the Dempster-Shafer ap-
proach. The generation of II(e) from observation e is given in Section 3.1. Secticn

8



3.2 and 3.3 illustrate the remainder of the computation for fuzzy evidential reason-

ing and the Dempster-Shafer theory respectively. The probabilistic approach, which
requires a transformation of the information in both the domain knowledge base and
the evidential information, is described in Section 3.4.

3.1 Evidential Compatibility

The identification of an element of the frame of discernment is accomplished by the
acquisition and analysis of evidence specifying the characteristics of the object. As
described in the preceding sections, domain information concerning an attribute at is

represented by a partial membership function

Pat(h) : V -+ [0, 1]

and evidence by a possibility distribution

7r, : V -+ [0, 11

where V is the set of possible values of the attribute at. The compatibility of a

hypothesis h with evidence e is obtained from the relationship of these two functions

from V into [0, 1].

To motivate the properties of the generation of evidential support, it is useful
to view domain information and evidence concerning an attribute at with values V

as vectors of length IVI. The focal elements of the functions are the components
of the vector with non-zero values. The compatibility of an object with evidence is

determined by a component-wise analysis of the vectors. The focal set of the evidence
e is the subset of V that is consistent with the acquired information. The only support
for h given by H, occurs when both 7r(vi) and PIat(h)(Vi) are non-zero, the intersection

of the focal sets. The remainder of the support of e is attributed to values that are
not consistent with the domain data.

Although we approach evidential reasoning via fuzzy set theory, the preceding
criterion also holds for the generation of support using probabilistic representations.

Probabilistic domain information for an attribute R(h) with possible values V is given

by a probability distribution p(hJvI),... ,p(hlv,,). Similarly, evidence is a conditional
distribution p(vIJe),... ,p(v,,Ie). The compatibility of h with e, p(hle), is obtainable

from these distributions. Support for h given e is given by

n

p(hje) = Zp(hlv)p(vile)
i=1

= E p(hlv,)p(vJe)
vEX

9



where X C V is the set consisting of the elements for which both p(hlvi) > 0 and
p(vile) > 0. That is, the probabilistic equivalent of the intersection of the focal sets.

A function that computes the compatibility of domain objects with evidence has
two arguments: an attribute description and an evidential distribution. Zadeh [121
and Terano and Sugeno [10] have proposed sup-min composition as an estimate of the
possibility of proposition given information.

11(e) = Sup^Ev[p t(h)(v) A ire(v)]

Sup-min composition is an extension of fuzzy conjunction to distributions. The min-
imum operator performs an element-wise conjunction. Taking the supremum then
chooses the maximal agreement between the domain information and the evidence.

The other compatibility function to be considered is the expected value operator.
The expected value operator incorporates the influence of all the elements in the
intersection of the focal sets of H and at(h).

11(e) = 1 Z(Pt(h)(V) 7r.(V))

3ig(e) EV

The product pyt(v) " ir(v) measures the agreement of the domain information describ-
ing the likelihood of v with the support for v given by the evidence H,. The sum is
then scaled by the sigma-count of the evidence sig(e), the total of evidential support
for all the possibilities. The result is the summation of terms of the form

ire(v)

sig(e) . /at(h)(V)

for every v E V. The quotient may be interpreted as the proportion of the possibility
distribution of the evidence assigned to v.

The calculation of compatibility of evidence with information is illustrated in
Example 4. A comparison of several functions for determining the compatibility of
domain objects with evidential information can be found in [7]. This work shows that
the expected value operator constructs distributions that are superior discriminators
than those produced by sup-main composition.

Example 4: Domain knowledge base F from Example 1 and evidential distribu-
tions He, containing information describing attribute 1 and Ht containing information
describing attribute 2 are used to demonstrate the construction of compatibility dis-
tributions 11(e) and 11(f).

HI, = 0.5/a + 1/b + 0.5/c + O/d + Ole

H = 1/w + 1Ix + O/y + O/z

evidence e h, h2 h3  h4

sup-min composition 0.5 1 0.5 0.5
expected value 0.5 0.75 0.125 0.25

10



evidence f hi h2 h3 h4

sup-min composition 0 1 0.5 1
expected value 0 0.75 0.5 0.5

The effects of the incorporation of the entire focal set of the evidence can be
seen by examining the distributions 1(e) obtained from F and II. Using sup-ain
composition, h3 is assigned compatibility 0.5 since p t,(h3 )(c) = 0.5 and r,(c) = 0.5.
The compatibility assigned by the expected value operator is much lower since the
majority of the support indicated by e is assigned to a and b, which are incompatible
with h 3 .

3.2 Fuzzy Support Updating

Updating support using fuzzy reasoning techniques is a natural extension of the evi-
dential compatibility calculations. In a classification system based on fuzzy reasoning,
the measure of support is a possibility distribution II(E) over 0 that indicates the
possibility of the objects with the accumulated evidence E = {el,..., ek}. The com-
posite distribution II(E) is obtained by combining possibility distributions of the form
11(ei) generated by the observations ei, 1 < i < k.

Possibility distributions II(e) and II(f) over 0 specify the support for the objects
in 0 constructed from evidence II, and Hf respectively. The combination of support in
fuzzy reasoning utilizes the minimum function, the fuzzy analog of logical conjunction.
Thus the possibility distribution II(e, f) that specifies the combined support based
on observations e and f is given by

7(,f)(h) = 7r,.(h) A i7f(h),

Support updating using the minimum operator is commutative and associative, en-
suring a unique possibility distribution for each combination of evidence regardless
of the order in which the information is obtained and processed. The objects are
ranked according to the support indicated by the possibility distribution I(E) that
is obtained by combining all the acquired information.

Example 5: The combined support for the objects in r are obtained using evidence
11, and HIf and the compatibility measures 11(e) and II(f) derived in Example 4.

1(e,f hi h2  h3  h4

sup-min composition 0 1 0.5 0.5
expected value 0 0.75 0.125 0.25

11



Regardless of the compatibility function used to generate H(e) and 1(f), h 2 is deemed

the object most compatible with evidence e and f. Since the updated possibility

function need not be a normal possibility distribution, it is the relative strength of
the support rather than the actual numeric value that should be used as a measure of
support. With this in mind, we see that the results obtained using the compatibility
distributions constructed by the expected value operator supports h 2 to a greater

degree than the support assigned using sup-min composition to determine evidential
compatibility.

3.3 Dempster-Shafer Updating

The Dempster-Shafer (D-S) theory of evidential reasoning [6] employs a set-based
measure of support and Dempster's rule for updating. The representation of evidential
support in the D-S approach is a basic probability function. A basic probability
assignment is a function m : 2-- [0, 1] that satisfies

i) m(O) = 0

ii) E m(A) = 1.
AE2e

The value m(A) assigned to a subset A of the frame of discernment O indicates the
support for the elements of A. That is, m(A) is the measure of the support, based
on the evidence represented by m, that the object being identified is an element of

A. This portion of the total support cannot be further subdivided among the subsets
of A. Support expressly for the elements of a set B C A is given by m(B). The set
based support measure has been proposed because of the increased representational
capabilities over those of point based measures.

The first step in the D-S evaluation is the transformation of the compatibility
distribution II(u) generated from the evidential distribution He into a basic probability

assignment m,. Recall that the distribution 11(e) specifies the compatibility of the
objects with the evidential distribution H1,. Let {al,. . . , ak} be the range of the
compatibility distribution II(e). Without loss of generality, assume that ai >_ ai+1
for i = 1,... , k - 1. The a-support sets are used to define the focal sets of the basic
probability assignment generated from 17(e) and the domain information encapsulated
in 0. Definition 2 defines the basic probability assignment over 0 generated by
evidence HI(e).

Definition 1: The a-support of a compatibility distribution 11(e) is the set

S(ea) = {h, E 0 I r()(hi) = a).
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Definition 2: Let H(e) be a compatibility distribution with range al,... , ak. The
focal elements of the basic probability assignment constructed from H(e) are the sets

A1,..., Ak defined by
i

Ai= U S(e, ..
j=1

The basic probability assignment m, is obtained by solving the equations

k

i) Z m(Ai) = 1

ii) m(Ai) tai mC(Aj)

where IAI denotes the cardinality of the set A.

The focal elements of the basic probability assignment form a nested sequence
A 1 C A 2 C ... C Ak. The equations in part ii) ensure that the support assigned to
the focal elements is proportional to that assigned by the compatibility distribution
II(e). Equation i) normalizes the distribution of support producing a basic probability
assignment. The support assigned to the focal set Ai depends upon the number of
elements in the set and the degree of support cri. Dependence on cardinality of
the focal sets differentiates this technique from the standard transformation of a
possibility distribution to a basic probability assignment (see [5]).

Support combination rule of D-S theory utilizes the basic probability assignment
representation of support. Let m1 and m 2 be basic probability assignments with
focal elements A 1,..., A, and B1,..., Bm respectively. Focal elements Ai and Bj are
compatible if AiflBJ is nonempty. The intersection of Ai and Bj contains precisely the
elements that are consistent with both Ai and Bj. Support for the set of consistent
possibilities is obtained directly from the values ml(Ai) and m 2(Bj). Utilizing an
independence assumption, the combination rule assigns the product m 1 (Ai)m 2 (Bj)
to the intersection of the two focal elements.

Focal elements Ai and Bj are incompatible if their intersection is the empty set.
The value

K= y m l (Ai)m 2(Bj) (1)
AinB,=t

measures the incompatibility of the basic probability assignments m, and M 2 . The
incompatibility measure K can assume values between zero and one. If K = 1, there
are no compatible focal elements and the basic probability assignments are said to be
inconsistent.

Definition 3: Let mi and m2 be two basic probability assignments over a frame of
discernment 0. A new basic probability assignment m, called the orthogonal sum of
mi and M 2 , denoted m 1 (f M 2 , is obtained by the computation

13



i) m(o) =o

ii) m(A) = (m 1(Ai)m 2(Bj))/(1 - K)
AUB,=A

for every nonempty subset A of 0, where K is the measure of incompatibility of the
constituent basic probability assignments.

The orthogonal sum calculation is generally known as Dempster's rule of com-
bination. A nonempty set A C E is a focal element of the orthogonal sum if it is
the intersection of a focal element of m, and a focal element of M2. The pairwise
intersection calculation may assign a nonzero value to the empty set. Setting m(0)
to 0 and scaling by 1 - K produces a basic probability assignment.

Updating support in a D-S evidential reasoning system uses Dempster's rule to
combine basic probability assignments. If mE is the basic probability assignment that
indicates the support obtained from the observations E = {el,..., e,,} and m, the
basic probability assignment representing the support for additional information e,
the combined support m(E,,) is mE E m.

A basic probability assignment specifies the support for the elements of a set that
cannot be distributed to proper subsets of the set. The final step in the generation
of evidential support is to rank the alternatives based on the evidence. D-S theory
provides two measures, belief and plausibility, to rank the objects based on the support
in a basic probability assignment mE.

A belief function is a function bel : 2' -+ [0, 1] whose values indicate the total
support for the elements of a set. A belief function can be obtained from the values
of a basic probability assignment mE. For every A C G, the value bel(A) is defined
by

bel(A) = mE(B). (2)
BCA

bel(A) is the sum of the values assigned to the subsets of A. The summation ac-
cumulates all the support that is attributed to the elements of A. The plausibility
expresses the measure of evidential support that is not against the elements of A.
Using this terminology, the plausibility of a set A, denoted pl(A), is the total of the
nondisconfirming support.

pl(A) = 1 - bel(A)

It is important to recognize the difference between bel(A) and pl(A). bel(A) is the
total support for the elements of A. The plausibility is the total amount of belief
in A that the evidence will permit. The difference between pl(A) and bel(A) can be
considered the amount of uncertainty in the estimate of the likelihood of A.

The support assigned to the singleton set {hi} can be used as a measure of support
for the object hi. The effectiveness of using belief and plausibility as a ranking
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function has been examined in [3]. Plausibility has been shown to be more effective

and has been utilized in the GCT. The D-S analysis of evidence H1. and HI f in problem

domain r is given in Example 6 (see examples 1 and 4).

Example 6: The construction of a-support sets with imprecise domain information

is demonstrated using the domain 1 and compatibility distribution 1I(e) = 0.5/h, +

0.75/h 2 + 0.125/h 3 + 0.25/h 4 produced using the expected value operator (Example

5). The focal sets of the corresponding basic probability assignment are

s(e, 0.75) = A, = {h 2}

s(e, 0.5) = A 2 = {hI,h 2}
s(e, 0.25) = A 3 = {hi, h2, h 4 }

s(e,0.125) = A 4 = {hl, h2, h 3, h4 }.

Definition 2 produces the set of linear equations

m,(AI) + me(A 2) + m,(A3) + m,(A 4) = 1

me(A 2) = 2(0.5/0.75)m,(Aj)

m,(A 3 ) = 3(0.25/0.75)me(Aj)
m,(A 4) = 4(0.125/0.75)m,(Aj).

Solving the system of equations produces

m,(Ai) = 0.25

me(A 2) = 0.33

M(A 3) = 0.25
m,(A4) = 0.17.

The compatibility distribution 11(f) = 0/h, + 0.75/h 2 + 0.5/h 3 + 0.5/h 4 generates

the basic probability distribution

Q = 0.33

mf({h 2, h3 , h4}) = 0.66.

The basic probability assignment that designates the support for the elements of

e based on evidence e and f is obtained by combining me and ifl using Dempster's

rule.

m(eI)({h 2}) =1'

m(,,f)(h 2, h4}) = 13
m(ef)({h 2 , h 3 , h4 }) 18"

Ranking the candidates uses the plausibility assigned to the singleton sets by the

basic probability function m(,,f).
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object Ih, h 2 h3  h 4
plausibility 0 1 0.11 0.17

As with the fuzzy analysis of r with observations e and f, h2 receives the most
support. The independence assumption of Dempster's rule reduces the support for
elements that are partially supported by the constituent basic probability assignment.
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3.4 Probabilistic Evaluation

The generation of support using probabilistic techniques requires a transformation of
the domain and evidential representations into probability distributions. The fuzzy

domain knowledge base is converted into a set of conditional probability distributions.

Evidence is also transformed into a probability distribution. The objective is to
compute a probability distribution P(O = hi I E) where E is the accumulation of

evidence that has been acquired and processed. The algorithm to determine support
is based on probabilistic expectation. The updating may be viewed as a series of
matrix operations or as a Bayesian network. In this section we will present the
matrix development of probabilistic evidential support updating. The interpretation
of this algorithm as a Bayesian network can be found in [1].

The computations involved in determining probabilistic support will be illustrated
using the domain knowledge base r of Example 1 and the evidence for the objects in
1 given in Example 4.

The objects in r are defined by two attributes at1 and at 2 with domains {a, b,
c, d, e} and {w, x, y, z} respectively. Domain knowledge about the characteristics of
the objects is represented as conditional probability distributions over the possible
attribute values. Each attribute defines one matrix. The conditional probability
distribution for attribute at1 given 0, written P(ati I 0), as a matrix is

hi h2 h3 h4

a 0 0.5 0 0
b 0.25 0.5 0 0
c 0.5 0 0.25 0.5
d 0.25 0 0.5 0.5
e 0 0 0.25 0

[P(ati 10)]

The column designated by hi in the domain knowledge matrix for attribute at1 gives
the distribution that defines the probability of the attribute assuming a certain value
given that the object is known to be hi. That is, P(ati 10) is represented by the
matrix [p(ar I hi)] where r indexes rows and i columns.

The knowledge base for at 2, written P(at2 I 0), reformulated as a matrix is

hi h2 h3 h4
w 0 0.25 0.2 0
x 0 0.5 0.2 0.333
y 0.5 0.25 0.4 0.333

z 0.5 0 0.2 0.333

[P(at2 1 0)]

Once the domain information has been converted to its probabilistic represen-
tation, the evidence to be analyzed must also be transformed into a probabilistic
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representation. Evidence concerning an attribute ati is represented as a conditional
probability distribution over the set Vi of possible values of ati. Let E be a random
variable over the domain of the attribute. The evidence about at1 is obtained by
normalizing the possibility distribution He from Example 4.

a b c d e
P(ati I E=e) = [0.25 0.5 0.25 0 0]. (3)

Similarly evidence Hl' about at 2 produces the distribution

w X y z
P(at2 F=f) = [0.5 0.5 0 0] (4)

The probabilistic generation of support begins by assigning initial probability
values to the objects in 0. This may be done using a priori information. If no such
information exists, then each object is considered equally likely. Using the latter
approach, the probability distribution P(O) initialized and represented by the 1-by-4
matrix i.e., a vector.

hi h 2  h 3  h4

P(O) = [0.25 0.25 0.25 0.25]

The evidence generated by observations e and f and represented by the vectors
P(ati I E=e) and P(at2 I F=f) is incorporated into the measure of support sequen-
tially. The computation begins by finding P(O I at,), the support for the objects
given values of attribute at,. We use Bayes' rule to form P(O I at,) from P(O) and
P(at 1 0).

P(e)P(at1 I 0)
P( at) = P()P(at1 0) (5)E9 P(E))P(at, 10)

or, dropping the normalization,

P(O I at,) cx P(0)P(at, 10) (6)

Written element by element, this is

p(h, I ak) oc p(h,) . p(ak I hi) (7)

over all i for fixed k. Letting 0 represent the matrix operation corresponding to
Equation 7, have

a b c d e

hi h2 h3 h4  hi 0 0.25 0.5 0.25 0

[0.25 0.25 0.25 0.25] 0 h2  0.5 0.5 0 0 0
h3 0 0 0.25 0.5 0.25
h4 0 0 0.5 0.5 0

[P(E)] [P(at, I 0)] r
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a b c d e
hi 0 0.063 0.125 0.063 0
h2  0.125 0.125 0 0 0
h3  0 0 0.063 0.125 0.063
h4  0 0 0.125 0.125 0

0.125 0.188 0.313 0.25 0.063
([r(O)j 0 [P(ati I O)]) T

the columns of which are proportional to [P(O I at 1 )]. (We maintain the conventional
row-column conformance of operands. Accordingly the transposed matrix, [P(E I
at1)]T, is shown in the computation.) Normalizing, dividing each element in the
column by the column sum shown above, produces P(E I at1 ).

a b c d e
hi 0 0.333 0.4 0.25 0

P(O I at,) h2 1 0.667 0 0 0 (8)
h3 0 0 0.2 0.5 1
h4 0 0 0.4 0.5 0

Because we have chosen to begin the computation with a uniform distribution over
0, the distribution P(O I at 1) could have been computed by normalizing P(at, 1 0)
directly. However, this is not true in general and does not hold in general for further
steps in the iteration.

The probability matrix P(O I at,) is used to compute P(O I E=e), the updated
support for the objects in 0, using the product rule

P(O I E=ei) = P(ati I E=e1 )P(O Jat1 ). (9)
A

The corresponding operation is matrix multiplication, i.e.,

hi h2 h3 h4

a 0 1 0 0
a b c d e b 0.333 0.667 0 0

[0.25 0.5 0.25 0 0] c 0.4 0 0.2 0.4
d 0.25 0 0.5 0.5
e 0 0 1 0

[P(at, I E=ei)] [P(9 I at,)]T

hi &. h3 h4

[0.267 0.583 0.050 0.100]
[P(O I E=ei)]
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Hence P(O I E=e) is taken as the updated support for hypotheses.

Upon the acquisition of additional information f, the support must be updated to

represented the accumulated information. The computation to update P(O I E=e)

given evidence f proceeds using the same steps as the previous computation. In this

case, the initial distribution is the current state of belief P(O I E=e). The resulting

updated support is P(O I E=e, F=f). First the probability of the attribute values

of at2 are incorporated into the support to form P(O[ at 2, E=e).

w x y z

hi h 2  h 3  h4 hi 0 0 0.5 0.5

[0.267 0.583 0.050 0.100] ® h2  0.25 0.5 0.25 0
h3  0.2 0.2 0.4 0.2
h4 0 0.333 0.333 0.333

[P(E E=e)] [P(at2 I®)] T

w x y z
h i  0 0 0.134 0.134
h2 0.146 0.292 0.146 0

- [ 0.01 0.01 0.02 0.01
h4 0 0.033 0.033 0.033

0.156 0.335 0.333 0.177
c [P(E at 2 , E=e)]

w x y z
normalizing hi 0 0 0.045 0.757

+ h2  0.936 0.872 0.049 0
h3 0.064 0.03 0.007 0.056
h4 0 0.099 0.01 0.188

[P(® at2, E=e)]

In the second part of the computation, P(O I at 2, E=e) and the evidence in

Equation 4 are combined to form P(O I E=e, F=f).

P(E I E=e,F=f) = ,P(at2 I F=f)P(O 1at 2, E=e)
w

or

w x y z hi h 2  h 3  h 4

[o.5 0.5 0 0] - [P(O at2 , E=e)] = [0 0.904 0.047 0.05]

The resulting matrix represents the support for the objects based on the combi-

nation of the evidence. The probabilistic generation of support consists of repeated

iterations of the preceding cycle of algebraic manipulations of probability distribu-

tions.
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4 Generic Classification Tool

The Generic Classification Tool (GCT) has been designed to provide an environment
for analyzing the effectiveness and efficiency of evidential reasoning paradigms. The
GCT consists of three major subsystems: the Database System, the Observation-
Interpretation System, and the Reasoning System. The Database System is used to
create domain knowledge bases, which contain the formal representation of the do-
main specific information. This information is represented using the fuzzy techniques
described in Section 2.1. The Observation Interpretation subsystem is used to create
an observation-interpretaton (01) knowledge base that describes the properties of
the information that is obtained by the sensors. The 01 knowledge base is used to
transform the observed data into a possibility distribution. The resulting possibility
distribution is then used by the various reasoning paradigms. The Reasoning System
is the heart of the evidential reasoning process. Evidence, generated by an observa-
tion and the information in the 01 knowledge base, is analyzed using the selected
support generation paradigm to produce a measure of belief for the candidates in the
frame of discernment.

As illustrated in Figure 1, the Reasoning System consists of three main subsys-
tems: the Controller, the Evidential Interpreter and the Support Generation System.
The Controller obtains the observation and provides it to the Evidential Interpreter.
Using the 01 knowledge base, the Evidential Interpreter transforms the observation
into evidence.

The evidence is passed to the Support Generation System, which computes the
compatibility of the evidence with elements in the domain knowledge base. The com-
patibility measure is then transformed into the measure of support of the particular
evidential reasoning paradigm. The new evidence is combined with current state of
belief to form an updated support value for each object in the domain knowledge
base. The Controller transmits the updated support measures to a result file which
may then be processed by a set of analysis programs. The following sections describe
each of the major components of the GCT.

4.1 Major Subsystems

4.1.1 Database System

The Database System is used to define the properties of the elements of the frame of
discernment and to create a domain knowledge base. The process begins by defining
the frame structures of the objects to be recorded in the knowledge base. The follow-
ing information must be specified to produce the frame structure that provides the
skeleton for the objects that comprise the domain knowledge base.
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class The class of objects represented in the knowledge base.

attributes The characteristics that describe and differentiate the objects. These
define the structure of the knowledge base.

values The type and range of the values that each attribute may assume.

Attributes are initially assigned a name and a data type. The data types are
INTEGER, FLOATING POINT, and STRING. This is followed by specifying the
values that each attribute may assume. The set of permissible values for a string
attribute must be provided explicitly. For numeric attributes, the range may be
defined by upper and lower bounds. The following data will be requested when
defining the domain knowledge base.

name: the name for the attribute
data type: INTEGER, FLOATING POINT or STRING (enumeration)
low value: for INTEGER and FLOATING POINT
high value: for INTEGER and FLOATING POINT
legal values: for STRING
ordered: for STRING
multi-valued: for STRING
range-step: for INTEGER and FLOATING POINT

An attribute is multi-valued if its possible values are not considered to be mutually
exclusive. The range-step defines the precision to which the domain information must
be provided in numeric data types. A range step of i for an integer data type with
lower bound n and upper bound m indicates that information is required for attribute
values n, n + i, n + 2i, ... , m.

A string attribute may be ordered or unordered. An attribute is ordered if there is
a linear proximity relation on the values. These relations are used in interpreting and
processing imprecise information. Example 7 gives the definitions of the attributes
for the "radar" knowledge base that will be used throughout the sequel.

Example 7: A knowledge base containing the physical characteristic of six emitter
types has been constructed to illustrate the properties of the GCT. The full knowledge
base is described in Appendix B. The frame for the domain objects is defined as
follows:
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Attribute Data Type Range

RF FLOATING POINT 2.08 to 3.97 GHz
PW FLOATING POINT 0.15 to 1.0 usec
PRI FLOATING POINT 53.25 to 223.32 usec
PRI-ELEMENT1 FLOATING POINT 53.25 to 122.80 usec
PRI-ELEMENT2 FLOATING POINT 63.70 to 194.09 usec
SCAN-PERIOD FLOATING POINT 0.04 to 10.0 sec

Each of the above attributes has a range-step of 0.01.

Once the frame structure of the domain objects has been provided, objects may be
created and added to the domain knowledge base. For each object and attribute, the
user is asked to input the partial membership function that describes the properties
of the object. Precise domain information may be entered by specifying a single
value from the range of the attribute. Precise information is stored in the domain
knowledge base as a partial membership function which assigns 1.0 to the specified
value and all other values 0.

Imprecise domain information is entered by one of two methods: by explicitly en-
tering a partial membership function or by using a predefined function generator that
produces a partial membership function. Explicitly defined membership functions are
entered as a list of pairs with the first element in the pair being an attribute value and
the second the associated membership value. For example, the domain information
for the scan period for emitter type 4 is represented by the list

((0.05 1.0) (0.06 1.0))

All items not specificalily defined in the list are assigned membership value 0. That
is, those values are completely incompatible with the properties of the object being
defined.

A number of function generators are provided to produce common partial mem-
bership functions. The GCT predefined function generators are:

BELL-SHAPED: INTEGER, FLOATING POINT
INVERSE-BELL-SHAPED: for INTEGER and FLOATING POINT
S-SHAPED: for INTEGER and FLOATING POINT
Z-SHAPED: for INTEGER and FLOATING POINT
RANGE: for ordered types
INEXACT: for ordered types
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The function generator BELL-SHAPED takes three arguments: the midpoint
value of the peak, p; the peak range, a, and the compatibility range, /3. The peak
range is the distance from the midpoint to the end of the flat peak. The midpoint value
of the peak is always assigned the compatibility 1.0 and all values in the peak range
on either side of the midpoint have a possibility of 1.0. The compatibility range is the
distance from the midpoint to the nearest value whose compatibility is 0. All values
outside the compatibility range are assigned 0. A value within the compatibility range
but not in the peak range has a value determined by the parameterized membership
function which creates a curve joining the endpoints of the compatibility range and
the peak range. Given a value p for an attribute, the fuzzy set representing the
uncertain value of the attribute is defined by the parameterized membership function

0 if u <p-fl
[2/(#3 - a)l](u - p +8)2 if p -3 < u < p - (a +/3)/2
1 - [2/( 3 - a) 2](u - p + a)2 if p - (a +/3)/2 < u < p -a

PATTR1(U) = 1 if p - a < u < p +a
1-[2/( -a) 2](u-p-_a)2 ifp+(a +/3)/2<U (+/2[2 -_ -)1( p _-) if p + (a+ M/2 < < p +
0 if u >p+8

where u takes on the values in the range of the attribute. The curve is a flat-topped
bell curve which assigns a membership value of 1 to all u E [p - a,... , p + a]
and symmetrically decreases membership in the intervals [p - 0,... ,p - or] and
[p+a,...,p+J] before reaching a minimum value of 0 for the intervals [-o,...,p-0)
and [p +/3,..., oo]. The parameter a represents the distance from the generated value
p to the edge of the curve's peak. The parameter 3 specifies the distance from p at
which the value of the membership function becomes 0.

For example, the value for the attribute RF for emitter type 4 might be specified
as:

(BELL-SHAPED 2.27 4 20)

This defines a partial membership function in which all values between 2.23 and 2.31
have membership value 1.0. All values less than or equal to 2.07 and greater than or
equal to 2.47 are assigned compatibility values of 0. The partial membership function
is completed by connecting (2.07, 0) to (2.23, 1) and (2.31, 1) to (2.47, 0) using the
defined bell-shaped function. The function obtained from INVERSE-BELL-SHAPED
is the fuzzy complement of the function obtained from BELL-SHAPED.

The function generator S-SHAPED has two arguments: the smallest value whose
assigned 1.0 and the distance from this value to the largest value whose compatibility
value is 0. All attribute values greater than the leftmost value have a compatibility of
1.0 and all attribute values less than this largest value have compatibility 0. Attribute
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values in the intermediate range are assigned compatibility values determined by
connecting the endpoints of the two ranges using the S-SHAPED function definition.
The Z-SHAPED function generator produces membership functions that are similar

to those constructed by S-SHAPED with the intervals of total compatibility and

incompatibility reversed.

The function generator INEXACT constructs partial membership functions for

any ordered attribute. The single argument specifies one value which is assigned
compatibility 1.0. The nearest values of the attribute, according to the linear ordering,

are assigned 0.5. All other values are incompatible.

Another helpful function generator applicable for an attribute with ordered values

is RANGE. The arguments to RANGE are a lower and an upper bound. RANGE de-
fines a half-open interval with the upper bound excluded. All the values in the interval
are assigned the same compatibility value. For example, the domain information for

pulse width may be represented by the list

((RANGE 0.2 0.3) 1.0)

produces the partial membership function

1/0.20 + 1/0.21 + 1/0.22 + 1/0.23 + 1/0.24 + .... + 1/0.28 + 1/0.29

since pulse width is defined with a range-step of 0.01.

The LISP language permits the addition of new function generators. Being able
to define and redefine function generators provides the ability to easily expand and

modify the information in the knowledge bases.

The Database System also provides the knowledge base management functions
which allow the user to open, close, save, rename a knowledge base and to describe
the contents of a knowledge base. A description of a domain knowledge base contains
the frame structure and an enumeration of the objects currently in the knowledge

base. In addition the Database System provides a fuzzy query capability that permits
the user to perform a series of queries that use conjunction between the queries.

4.1.2 Observation-Interpretation System

The Observation-Interpretation subsystem is used to define the information required
to transform an observation into the format to be processed by the reasoning system.
The required format for an observation concerning an attribute is a possibility distri-
bution over the set of values that the attribute may assume. The 01 knowledge base
is constructed to provide the means to interpret observations during the identification

process.
An interpretation definition for an attribute may be specified using a GCT-defined

or user-defined function generator or by explicitly specifying a possibility distribution

26



1.0- 1.0-

0.54I 0.51 I

0.0 0.0  L

0.0S-SHAPED I . 2 Z-SHAPED
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for each potential observation of an attribute. The GCT-defined function generators,
which were described above for specifying inexact values for attributes in the knowl-
edge base, may also be used in translating an observed value into evidence, i.e., a

possibility distribution.
An explicitly defined interpretation for the pulse-width attribute requires a pos-

sibility distribution for each of its observable values. The format of such an inter-
pretation consists of a description of the observations followed by a list or function
description giving the possibility of each attribute value for a given observation. For
example, an observation interpretation for pulse width may take the form

(HI-RANGE 3.97 LO-RANGE 2.08 OBS-TYPE FLOATING-POINT)
(PULSE-WIDTH 0.05 PEAK-WIDTH 0.02 DIST-TYPE NUMERIC)

This interpretation definition for the attribute pulse-width specifies that an obser-
vation is to be interpreted as the center point of a bell-shaped membership function
that produces grades of membership for each value within the range 2.08 to 3.97 using
the range-step 0.01 specified for pulse-width attribute. For example, if the observa-
tion for the pulse width is 2.22, then the possibility distribution that describes this
information is

0.22/2.18 + 0.88/2.19 + 1/2.20 + 1/2.21 + 1/2.22 + 1/2.23 + 1/2.24 + 0.88/0.25
+ 0.22/0.26.

4.1.3 Reasoning System

The Reasoning System consists of three major components: the Controller, the Evi-
dential Interpreter, and the Support Generation System. The interaction among these
three components is based on the processing cycle of observation acquisition by the
Controller, transformation of observation into evidence by the Evidential Interpreter,
and the generation of a measure of support for the domain object in the Support
Generation System.

4.1.4 Controller

The Controller is responsible for managing the identification process. It assumes
that the Database System has been used to open the domain knowledge base and
the Observation-Interpretation system has been used to open the 01 knowledge base.
The user must select the reasoning paradigm. The Support Generation subsystem
may process information using the Dempster-Shafer approach or several techniques
utilizing fuzzy evidential reasoning. A separate subsystem is used for the probabilistic
analysis.
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The Reasoning System has three modes of execution: manual, automatic, and
input. With manual execution, the user establishes the knowledge base object to
be identified, the order and number of the attributes for which an observation is
provided, and the observations themselves. This mode is primarily for testing and
demonstration.

Automatic execution is the default mode. The controller randomly chooses an
element from the knowledge base to be identified, and then determines the order of the
attributes for which observation is to be acquired. The observation is also generated
randomly about the actual value of the attribute of the selected object. This mode
will be used for parametrically examining the effectiveness of the alternative support
generation strategies.

The input mode of execution permits the use of a previously created script file as
input. A script file contains all the information required from the user when execution
mode is manual, except that it is stored in a file instead of being interactively provided.
The script file may be created by recording the automatic or manual execution of the
system. A script file may also be created using a text editor.

4.1.5 Evidential Interpreter

Once an observation is obtained, the Evidential Interpreter receives the information
and transforms it into evidence. The transformation into evidence is defined by the 01
knowledge base. For each attribute in the domain knowledge base, the 01 knowledge
base contains a mapping of each observation into a possibility distribution over the
set of possible attribute values. The resulting possibility distribution is combined
with the information in the domain knowledge base using the compatibility function.

4.1.6 Support Generation

The Support Generation System receives the evidence for an attribute in the form of
a possibility distribution produced by the Evidential Interpreter. The choice of the
reasoning paradigm dictates the representation of the evidence and the techniques
used to update the measure of belief upon the acquisition of additional information.

For each object in domain knowledge base, a compatibility measure of the evidence
and the partial membership function that describes the value of the attribute of
the object (Section 3.1) is produced. Using the compatibility measure, the Support
Generation System updates the support measure for all the elements in the frame of
discernment using the appropriate combination function.
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4.2 Domain Knowledge Bases

Domain information describing each element in the frame of discernment is contained
in the domain knowledge base. Each entry describes an object in the frame of discern-
ment using the fuzzy attribute-value representation. The Database System is used to
define the frame structure and construct the elements of the knowledge base. In this
section we discuss the internal representation of the domain knowledge base.

Domain objects in the domain knowledge base are represented as list structures.
The knowledge base is a text file that can be used both by the programmers and the
programs.

The domain objects in the sample radar knowledge base are types of emitters.
The attributes of one of the entries, emitter type 1, ET1, are described in English
in Example 2 (page 5). As can be seen in Figure 3, the function RANGE is used
extensively to represent intervals. The RF attribute of emitter type 1 has a center
"most observed" range, a "probable" range that includes it, and a "possible" range
that includes them both. This is represented as five nonoverlapping ranges, the two
outermost as possible, their inner neighbors as probable, and the center as the range
most observed. For example,

((RANGE 2.30 2.54) LEAST-LIKELY)

describes the low end of the values compatible with the radar frequency of emit-
ter type 1. (RANGE 2.30 2.54) describes the numerical limits ot the range, and
LEAST-LIKELY attaches the belief value "possible" to that range. The possibility
values assigned to most-likely, probable, and least-likely are 1.0, 0.75 , and 0.5, re-
spectively. The ranges of other attributes, such as PRI, are given a belief value of
1.0, that is, they are considered equally possible.

The prologue of a knowledge base contains the information that defines the prop-
erties of the elements of the knowledge base. The prologue for the radar knowledge
base is given in Figure 4. The entry LEGALDB begins the prologue. This is followed
by a list that specifies the name of the knowledge base, RADAR, and the names of
the attributes. The remaining lists describe the properties of each attribute. For
example, the values of attribute RF (radio frequency) are single values (MULTI-VAL
N), floating point (DATA-TYPE 2) and range from 3.97-2.08 GHz in steps of 1.

The pulse-repetition interval attribute, PRI, is described with three entries in
the prologue. PRI is used for emitters that operate in constant PRI mode. PRI-
ELEMENT1 and PRI-ELEMENT2 attributes are used for emitters that operate in
staggered mode.
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The List Data Structure Explanation

(ET1 Emitter Type 1 Attributes
(RF (LIST RF Details
((RANGE 2.30 2.54) LEAST-LIKELY) possible: 2.30-3.47 GHz
((RANGE 3.25 3.47) LEAST-LIKELY)
((RANGE 2.54 2.77) PROBABLE) probable: 2.54-3.25
((RANGE 3.01 3.25) PROBABLE)
((RANGE 2.77 3.01) MOST-LIKELY)) most observed: 2.77-3.00

PRI Details
PRI (LIST Constant PRI Mode
((RANGE 90.96 101.28) 1.0) 90.96 - 101.27 psec
((RANGE 116.87 133.63) 1.0) 116.87- 133.62
((RANGE 179.19 199.22) 1.0)) 179.19- 199.22

PRI-ELEMENT1 (LIST Staggered PRI Mode
((RANGE 66.42 71.12) 1.0) element la: 66.42-71.11 psec
((RANGE 74.76 107.91) 1.0)) element 1b: 74.76-107.90

PRI-ELEMENT2 (LIST
((RANGE 136.36 157.58) 1.0) element 2a: 136.36-157.57
((RANGE 191.08 194.09) 1.0)) element 2b: 191.08-194.09

PW
((RANGE 0.2 0.3) 1.0)) limits: 0.2-0.3 psec.

SCAN-PERIOD (LIST Scan Details
((RANGE 0.04 0.06) 1.0) CON: 0.04-0.06 sec
((RANGE 2.0 4.0) 1.0))) BDS: 2.0-4.00

)

Figure 3: Database entry for emitter type 1
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LEGALDB

(RADAR (RF PW PRI PRI-ELEMENTI PRI-ELEMENT2 SCAN-PERIOD))

(RANGE-STEP 0.01 MULTI-VAL N
HI-RANGE 3.97 LO-RANGE 2.08 DATA-TYPE 2 NAME RF)

(RANGE-STEP 0.01 MULTI-VAL N
HI-RANGE 1.0 LO-RANGE 0.15 DATA-TYPE 2 NAME PW)

(RANGE-STEP 1.00 MULTI-VAL N
HI-RANGE 223.32 LO-RANGE 53.25 DATA-TYPE 2 NAME PRI)

(RANGE-STEP 1.00 MULTI-VAL N
HI-RANGE 122.8 LO-RANGE 53.25 DATA-TYPE 2 NAME PRI-ELEMENT1)

(RANGE-STEP 1.00 MULTI-VAL N
HI-RANGE 194.09 LO-RANGE 63.7 DATA-TYPE 2 NAME PRI-ELEMENT2)

(RANGE-STEP 0.01 MULTI-VAL N
HI-RANGE 10 LO-RANGE 0.04 DATA-TYPE 2 NAME SCAN-PERIOD)

Figure 4: Prologue for radar knowledge base
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4.3 Radar identification example

The preceding sections described the domain and evidential representations and sup-
port generation techniques used by the GCT. In this section we illustrate the prop-
erties of the GCT by examining the identification process using the radar problem
domain. The frame structure and representation for the radar knowledge base were
described in the previous section. The complete knowledge base, consisting of six
emitter types, is given in Appendix B. A possibility distribution over the six emitter
types is constructed to represent the support based on the acquired information. The
session shown in Figure 5 used the dynamic mode for object selection and observation
acquisition.

Line 1 indicates that ET6, emitter type 6 is the radar type to be identified.
The identification proceeds by acquiring information concerning the characteristics of
the an attribute. Using the dynamic mode, the controller chooses an attribute and
obtains a value for that attribute. Line 2 shows that the radio frequency was the
chosen attribute and the observation indicates that the unknown emitter is operating
at 3.06 GHz.

The evidential interpreter produces the compatibility measure for each of the emit-
ter types based on the observation. This is transformed into a possibility distribution
(because of the choice of possibilistic reasoning) which indicates a measure of support
for each type based on the single observation. After processing each observation, the
support for each of the emitter types based on the accumulated evidence is computed
and output (lines 4-7). Emitter types that are determined to be incompatible with
the evidence are omitted from the listing.

The identification continues with the acquisition of another observation. (line 9).
The pulse width is reported to be 0.19 psec. Updating the support based on this
evidence indicates that only emitter type 6 is consistent with the accumulated infor-
mation (line 9). Tie acquisition of additional information only confirms emitter type
6. Another iteration chooses emitter type 4 as the unidentified object (line 24). This
time, three observations are required to unambiguously identify the emitter type.

The rapid convergence to a definite conclusion in the preceding examples is a
result of the makeup of the radar knowlege base. The domain consisted of only six
emitter types with little overlap in the characteristics of the different types.
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1 HYPOTHESIS DOMAIN OBJECT : ET6

2 OBSERVATION RF: 3.06

3
4 DOMAIN OBJECT : ET3 SUPPORT: 1.0
5 DOMAIN OBJECT : ET6 SUPPORT: 1.0
6 DOMAIN OBJECT : ET6 SUPPORT: 0.75

7 DOMAIN OBJECT : ET5 SUPPORT: 0.75

8 Press RETURN to continue
9 OBSERVATION PW : 0.19

10 DOMAIN OBJECT : ET6 SUPPORT: 1.0
11 Press RETURN to continue

12
13 OBSERVATION SCAN-PERIOD : 8.25
14 DOMAIN OBJECT : ET6 SUPPORT: 1.0
15 Press RETURN to continue

16
17 OBSERVATION PRI-ELEMENTI : 254.49
18 DOMAIN OBJECT : ET6 SUPPORT: 1.0
19 Press RETURN to continue
20
21 OBSERVATION PRI-ELEMENT2 : 257.96

22 DOMAIN OBJECT : ET6 SUPPORT: 1.0
23 Press RETURN to continue
24 HYPOTHESIS DOMAIN OBJECT : ET4
25 OBSERVATION RF : 2.33
26 DOMAIN OBJECT : ET4 SUPPORT: 0.75
27 DOMAIN OBJECT : ETI SUPPORT: 0.5
28 DOMAIN OBJECT : ET3 SUPPORT: 0.5
29 Press RETURN to continue
30 OBSERVATION PW : 0.66
31 DOMAIN OBJECT : ET4 SUPPORT: 0.75
32 DOMAIN OBJECT : ET3 SUPPORT: 0.5
33 Press RETURN to continue
34 OBSERVATION SCAN-PERIOD : 0.05
35 DOMAIN OBJECT : ET4 SUPPORT: 0.75
36 Press RETURN to continue
37 OBSERVATION PRI : 87.0
38 DOMAIN OBJECT : ET4 SUPPORT: 0.75
39 Press RETURN to continue

Figure 5: Radar identification example
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5 Testing Methodology

The GCT has been developed to examine and compare the effectiveness of the evi-
dential reasoning techniques under varying conditions of domain and evidential un-
certainty. This section describes the knowledge bases and measurement criteria used
in the analysis.

5.1 Domain Knowledge Bases

Five domain knowledge bases were created for the analysis. The knowledge bases
differ by the distribution of the objects and the precision in the definition of the at-
tributes. Each domain knowledge base has 100 objects. The objects in the knowledge
bases are defined by three integer-valued attributes ATTR-1, ATTR-2, and ATTR-3
whose domains are

ATTR-1 = {1,2,3,...,98,99,100}

ATTR-2 = {i,2,...,10}

ATTR-3 = {0,1}.

Domain information for attribute three is considered to be precise. Consequently, for
every domain object, ATTR-3 is defined either by the membership function 1/0 +
0/1 or by 0/0 + 1/1. The domain information for attributes ATTR-1 and ATTR-2
is imprecise and represented by a bell-shaped partial membership function. A bell-
shaped membership function is determined by the midpoint p and parameters (V and
f#. The membership of attributes values in the interval [p - a, p + a] is one. If a is
increased, then a wider range of attribute values are considered completely compatible
with the domain information. The fi value determines the size of the focal set of the
bell-shaped distribution. Section 4.1 contains a complete description of a bell-shaped
distribution.

The domain knowledge bases are divided into two classes based on the distribution
of the objects. In the uniform knowledge bases, the midpoints of the imprecise at-
tributes are chosen uniformly from the possible values. Normal knowledge bases were
constructed to simulate the clustering of domain objects. The knowledge bases will be
referred to as precise-uniform, medium-uniform, high-uniform, medium-normal-two-
cluster and medium-normal-five-cluster, respectively. The first word in the name-
precise, medium, high-specifies the amount of imprecision in the partial membership
functions that define the attributes. The second word-uniform, normal--describes
the type of distribution used to generate the midpoints for the imprecise attributes.

Values for attributes one and two for domain objects in the set of uniform knowl-
edge bases are defined by midpoints Pi and P2, respectively. These values are randomly
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chosen from a uniform distribution over the domain of the attribute. The precise value
for attribute three was obtained by a uniform random selection from the set {0, 1}.

The three uniform domain knowledge bases aue produced from the same randomly
generated points. These knowledge bases differ only in the precision of the representa-
tion of domain information. This difference is obtained varying the a and / values for
attributes one and two. In all three domain knowledge bases, membership functions
defining ATTR-3 are assumed to be precise. The parameters defining the uniform
knowledge bases are given in the table below.

ATTR-1 ATTR-2 ATTR-3
DOMAIN DATA BASE c /P Ia #

-precise-uniform 0 1 0 1 (precise)
medium-uniform 5 10 0 1 (precise)
high-uniform 10 20 1 4 (precise)

The clustered knowledge bases are created in two steps. First, the IMSL statistics
library, a collection of FORTRAN statistical analysis routines, was used to generate
100 multivariate values. The covariance between the pairs of components was speci-
fied as zero. The first component of the multivariatt value has a normal distribution
with mean zero and variance 10.0, denoted N(0, 10.0), where the second component
has a N(0, 1.0) distribution. The third component has a N(0, 1.0) distribution. For
each multivariate value, a value u from the uniform distribution over [0, 1] was also
generated. This value is used to determine in which cluster to place an object. In the
second step, clusters were created with respect to ATTR-1 and ATTR-2 by trans-
forming the first two components of each of the 100 multivariate values through the
formula for the contaminated multivariate normal distribution [41 with m the number
of components in the multivariate value:

pNrn(il, o1 ) + (1 - p)Nm(P 2 , a 2 )

The addition in this formula refers to combining the process of realizing an object
from a bimodal distribution. With probability p, an object is realized from N,,,(Pl, rl)
and with probability (1 -p) from N,.(112, 0'2).

The parameters for creating the two-cluster domain knowledge base are as follows:

m =2

p = 0.6
P2 = (1-pi)=0. 4

A = [63.0,6.01
Y2 = [33.0,3.0]

[ 10.0 0.0]
10.0 1.0
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The third component of the multivariate value was not considered in the clustering
since it mapped to ATTR-3, with a precise binary valued attribute. There would
be no possibility of overlap between the clusters if all objects in cluster one had the
same value for ATTR-3, and this value was different from the value for all objects in
cluster two. The objects in the two-cluster domain knowledge base were created as
follows:

1. The uniform number associated with the generated multivariate value was
tested. If u < Pl, then the first and second components of the multivariate
value were added to the respective components of /.

2. If u > pl, then the first and second components of the multivariate value were
added to the respective components of u2.

3. Each component in the addition result was then rounded to the nearest integer
value and taken to be the respective values for ATTR-1 and ATTR-2

4. The value for attribute ATTR-3 was set to zero if the third component of the
multivariate value was less than or equal to zero; otherwise, it was set to one.

5. The attribute values generated were then fuzzified using the bell-shaped func-
tion and the parameters used for the medium-uniform knowledge base.

Creation of the five-cluster domain knowledge base followed the above procedure
but five distributions instead of two were mixed. The parameters for creating the
five-cluster domain knowledge base are as follows:

m=2
p= 0.2 /II = [20.0, 1.0]
P2 = 0.3 /2 = [35.0, 3.0]
P3 0.1 P3 = [55.0, 5.0]
P4 0.1 /14 = [75.0, 7.0]
Ps = 0.3 p = [95.0,9.01

[10.0 0.01
Ol = . = 0.0 1.0

1. The uniform number u associated with the generated multivariate value was ex-
amined. The cluster to which this object is assigned is determined by comparing
this value to the pi's. The first and second components of the multivariate value
were added to the respective components of the appropriate Pi.

2. Each component in the addition result was then rounded to the nearest integer
value and taken to be the respective values for ATTR-1 and ATTR-2. Some of
the clusters, i.e., cluster one and cluster five have mean values for attributes that
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are at the low or high range for its possible values. If the generation produced
a value that was outside the legal range, the object still received that value for
the attribute.

3. The value for attribute ATTR-3 was set to zero if the third component of the
multivariate value was less than or equal to zero; otherwise, it was set to one.

4. The attribute values generated were then fuzzified using the bell-shaped func-
tion and the parameters from the medium-uniform knowledge base.

5.2 Observation and Interpretation

The identification process is driven by the acquisition and interpretation of informa-
tion describing the properties of the unknown object. In the GCT, two components
combine to produce the evidential distributions. A user defined probability distribu-
tion defines the accuracy of the observation, the proximity of the randomly produced
center point to that of the actual center point of the object being identified. The
second step in the construction of the evidential distribution is the interpretation of
the observation. This introduces imprecision into the observation. An observation-
interpretation knowledge base contains the information to transform the observation
e into the evidential distribution H,.

Two probability distributions, Pmedium and Phigh, were used to analyze the
effects of varying the inaccuracy of the observations. An observation is considered
accurate if it agrees closely with the actual midpoint that defines the attribute of
the selected hypothesis. The parameters used to generate Pmedium and Phigh are
summarized in the table below.

ATTR-1 ATTR-2 ATTR-3

distribution distribution distribution
Observations Type Std Dev Type Std Dev Type Std Dev

Pmedium Normal 5 Normal 0.5 U niform 0.1

Phigh Normal 10 Normal 1 Uniform 0.1

Phigh is similar to Pmedium except that the standard deviations for ATTR-1 and
ATTR-2 are greater. That is, for Phigh the observations generated by the GCT
controller may be farther from the actual attribute values of the object selected for
identification. In both cases an observation of ATTR-3 was generated by returning
the actual value with probability 0.99.

Three different evidential interpretations were defined by three observation-inter-
pretation knowledge bases in order to test the effects of evidential imprecision in
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generation of support. The precise evidential interpretation treats the observed val-
ues for all attributes as precise information. Thus, an observed value x is represented
by the possibility distribution 1/. For the medium evidential interpretation observa-
tions for attribute ATTR-1 are defined by the bell-shaped distribution function above,
with a = 5 and # = 10. For attribute ATTR-2, the bell-shaped distribution function
with a = 0 and P = 2 is used. For the high evidential interpretation observations for
attribute ATTR-1 are defined by the bell-shaped distribution function with a = 10
and P = 15. For attribute ATTR-2, the bell-shaped distribution function with a = 1
and # = 4 is used. Observations for ATTR-3 are considered to be precise in all three
evidential interpretations. For example, an observation of 0 for ATTR-3 is simply
represented by the possibility distribution 1/0.

In the tests described in the following section, we have used the bell-shaped dis-
tribution for both representations. Other distributions may be used for fuzzifying the
information represented in the domain and evidential knowledge bases. To generate
observations for an attribute, the GCT references the user-defined probability dis-
tribution specified for that attribute in the 01 knowledge base. For example, for an
attribute, a normal distribution with a standard deviation of 3.0 might be specified.
The mean is the actual domain knowledge base value for the attribute of the selected
hypothesis. The user-defined probability distributions used to generate observations
may be changed easily. The ability to control the precision of the observations used by
an evidential reasoning technique permits determining its practical limitations when
faced with increasingly inaccurate observations.

5.3 Testing Procedure

A test consists in selecting an object at random from the domain knowledge base,
generating observations describing the selected object, and applying the support gen-
eration and updating strategies to construct a measure that estimates the likelihood
of the elements in the frame of discernment based on the observations. A test ruin
is the result of iterating individual tests. For each test run, a number of parameters
must be specified:

e the domain knowledge base

* the 01 knowledge base

* the evidential reasoning paradigm

* the number of observations of one hypothesis

e the number of tests per test run
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The domain knowledge base determines the degree of uncertainty in the domain
knowledge. The 01 knowledge base specifies the degree of imprecision to be intro-
duced into the generated observations. In addition, the number of tests and the
number of observations for each test must be specified.

For statistical analysis, each test run consisted of 100 tests. For all the test runs,
the number of observations per test was ten. Table 1 summarizes the test runs and
identifies each with a number. A value in the Domain column and the Interpretation
column represents the the degree of fuzziness present in the appropriate knowledge
base for the corresponding test run labelled by the row. Also, the two-cluster and
five-cluster domain knowledge bases are prefixed with "2c-" and "5c-" respectively.
A value in the Observation column represents the degree of variability of a generated
observation from the value found in the domain knowledge base.

5.4 Measurements and Analysis Techniques

The measures used to compare the effectiveness of these evidential reasoning tech-
niques are determined from the support assigned to the objects at the completion of
the test. The level-n support and the entropy along with their means and standard
deviations are calculated for each test run. As described in Section 3.3, the plausi-
bility of singleton sets is used to construct the ranking of candidates when the D-S
technique is employed.

A test has level-n support if the number of objects that have support greater than
or equal to that of the selected object is n or less. For example if three objects, one
of which is the selected object, are tied with the highest level of support, the test has
level-3 support. If five objects tied with the highest level of support and the selected
object has the next highest support (without ties), the support level is 6. Level-n
support measures the extent to which the reasoning method assigns support to the
selected object. However, it does not reflect the extent of rejection of other objects.
For that, we turn to entropy.

The entropy or information expectation is a measure of the uncertainty present,
in a probability or possibility distribution. For an m-point discrete probability dis-
tribution {p(xi) 1 < i < m} the entropy is

m

i p(xi)log2 p(xi)

and ranges from zero (certainty) to log 2 m (maximum uncertainty). The entropy
value is a measure of the certainty of the final support to hypotheses regardless of the
selected hypothesis.
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Table 1: Test case summary

Case Domain Interpretation Observation
1 none none medium
2 none medium medium
3 none high medium
4 medium none medium
5 medium medium medium
6 medium high med*ium
7 high none medium
8 high medium medium
9 high high medium
10 2c-medium none medium
11 2c-medium medium medium
12 2c-medium high medium
13 5c-medium none medium
14 5c-medium medium medium
15 5c-medium high medium
16 none none high
17 none medium high
18 none high high
19 medium none high
20 medium medium high
21 medium high high
22 high none high
23 high medium high
24 high high high
25 2c-medium none high
26 2c-medium medium high
27 2c-medium high high
28 5c-medium none high
29 5c-medium medium high
30 5c-medium high high
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6 Analysis of Techniques

In this section the effectiveness and the efficiency of the support generation paradigms

are compared over the series of test domains summarized in 'Fable 1. The measures

by which the effectiveness of the reasoning algorithms are compared are the level-,n
support and the entropy. The level support data are shown as frequency graphs in

Appendix A. The mean entropy and standard deviation of the support distributions

generated by the tests Table 2.
The graphs in Appendix A show the frequency of level-n support. The features of

interest in studying the level support are the level-1 support, the maximum frequency,

and the rate at which the curve rises from the level-1 support toward the frequency
of 100. The level-1 support measures how often the selected object was ranked higher
than all other objects. The graph of a level-n vs frequency is an increasing function
since a test that is level-i is also level-i + 1. The difference between the number of
tests and the maximum frequency specifies the number of times that the selected

object was given no support.
On graph 2 (obtained from the test run using precise domain information, medium

evidential imprecision and medium variance) the level-1 support for the probabilistic

method is approximately 55. That signifies that in 55 of 100 tests, the selected object
was given the most of the probabilistic support. The probabilistic curve in graph 2
rises to frequency of about 82 at level-5 support. This signifies that the target object
was in the top 5 of supported objects 82 times out of the 100 runs. The curve rises

little thereafter with increasing percentages and ends at support level 6. No values for

higher percentages are shown. This indicates that the probabilistic method assigned
some support to the selected object 82 times in the 100 tests. In the other cases, the

selected object received no support.

The entropy value indicates the degree of uncertainty in the final support distribu-
tion. The entropy measure assumes values between zero and log 2 100. The maximum

uncertainty occurs when no object is favored. In this case the entropy is log 2 100,
which is approximately 6.64. An entropy of zero indicates a precise distribution, one
in which a single object receives all the support.

Under certain combinations of domain representation and evidential uncertainty,
a reasoning technique may fail to assign support to any of the domain objects. When

this occurs the selected object is said to be eliminated from consideration. The en-
tropy value is calculated only for the cases in which the reasoning system supports
the selected object. Case 16 demonstrates the necessity of combining both the en-
tropy and the level-n support when considering the effectiveness in a test scenario.
The entropy of zero indicates that the resulting distributions select a unique object.
However the level-n graph shows that this scenario, precise domain data and precise

evidence, eliminates the selected object 99% of the time.
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Table 2: Entropy results: mean and standard deviation

Sup-Min Exp Value Prob'c D-S
Case E S- E S- E Sy E ST

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.86 0.77 0.84 0.76 0.83 0.78 0.57 0.61
3 1.91 0.79 1.94 0.80 1.58 0.84 1.28 0.79
4 0.87 0.77 0.87 0.77 0.73 0.71 0.74 0.72
5 2.32 0.71 1.93 0.73 1.55 0.72 1.28 0.77
6 3.09 0.59 2.73 0.59 2.40 0.65 1.79 0.75
7 2.74 0.59 2.74 0.59 2.39 0.68 2.29 0.63
8 4.12 0.50 3.70 0.53 2.60 0.62 2.36 0.64
9 3.64 0.60 3.25 0.56 2.95 0.53 2.65 0.63

10 2.90 1.18 2.90 1.18 2.50 1.20 2.66 1.14
11 4.34 0.69 4.09 0.74 3.27 0.92 3.52 0.81
12 4.62 0.50 4.5 1 0.56 3.54 0.59
13 2.08 1.09 2.08 1.09 1.77 1.03 1.84 1.02
14 3.38 0.88 3.06 0.91 2.54 0.88 2.41 0.90
15 3.92 0.75 3.64 0.81 3.19 0.83
16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
17 0.85 0.70 0.82 0.70 0.61 0.68 0.51 0.59
18 1.57 0.84 1.58 0.85 1.12 0.95 1.10 0.78
19 0.91 0.69 0.91 0.69 0.65 0.69 0.76 0.69
20 1.88 0.79 1.56 0.79 1.17 0.81 1.20 0.73
21 2.62 0.67 2.25 0.70 1.92 0.88 1.66 0.73
22 2.25 0.75 2.25 0.75 1.91 0.82 1.90 0.75
23 3.80 0.54 3.40 0.56 2.36 0.64 2.19 0.63
24 3.24 0.60 2.84 0.60 2.84 0.55
25 2.49 1.37 2.49 1.37 1.64 1.38 2.30 1.36
26 3.77 0.99 3.42 1.06 2.44 1.08 3.09 1.03
27 4.36 0.71 4.11 0.80 3.13 0.90 3.68 0.84
28 2.08 1.19 2.08 1.19 1.40 1.17 1.84 1.17
29 2.95 1.11 2.60 1.10 1.94 1.11 2.23 0.95
30 3.55 0.94 3.20 1.00 2.68 1.16 2.68 0.99
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The analysis begins by considering the effects of each of the parameters individ-

ually. This is followed by a discussion of the performance of the particular reasoning
techniques: fuzzy evaluation and probabilistic. Finally the performance of the tech-
niques is compared.

6.1 Evidential Precision

The capabilities of a sensor are defined by two properties, its accuracy and its pre-
cision. The accuracy refers to the proximity of the value returned by the sensor to
the actual stimulus. The precision is the interpretation of the value. For example,

a faulty scale may determine weight within plus or minus five pounds. This is the
accuracy of the scale, the value returned is within 5 pounds of the true weight. Con-
fidence in the value is the precision of the sensor. We will now examine the effects
of the interpretation of sensor data on support generation. This will be followed by
analysis of sensor accuracy.

The precision of an observation is determined by the interpretation of the sensor
data. The incorporation of imprecision into the evidence is the result of the fuzzifi-
cation of the data returned by the sensor. In the GCT, the degree of imprecision is
determined by the parameters a and #3 that define the bell-shaped function. Three
interpretations are used io determine the effect of evidential imprecision on support
generation. The analysis of evidential imprecision begins by considering the case in
which the data provided by the sensor is assumed to be precise.

The assumption that evidence is precise imposes restrictions on the ability of the
reasoning system to correctly identify the selected object. Precise evidence concerning
an attribute at is represented by a possibility distribution of the form He = 1/v, where
vi is the value returned by the sensor. In the case of the GCT analysis, vi is the value
that is randomly generated based on midpoint of the partial membership function
defining the attribute at of the selected object and the accuracy assigned to the
sensor.

A domain object is eliminated from consideration if the evidence is incompati-
ble with the domain information. For an object h to receive support from precise
evidence, the value vi must fall with the range of values deemed consistent with h
by the membership function at(h). When this does not occur, h is assigned a zero
likelihood and removed from further consideration by all of the reasoning techniques.
Table 3 shows the number of times the selected object is eliminated by the limitations
imposed by precise information. The data in Table 3 are averages of the results over
the four evidential support generation strategies.

When the domain knowledge is also considered precise, an object receives support
only when domain data and the evidence are an exact match. Over a number of
observations from an inaccurate sensor, at least one observation may be expected to
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Table 3: Precise evidence

Percent Eliminated Level-3 Support
medium high medium high

Knowledge Base variance variance variance variance
precise-uniform 99 99 1 1
medium-uniform 21 80 70 48
high-uniform 3 25 65 47

vary from the precisely specified domain data. Our results indicate this to be the
case, with 99% of the tests excluding the selected object. In general, the assumptions
of precise domain and sensor data are unrealistic for evidential reasoning in an un-
certain domain. This remark is supported by the poor performance of the reasoning
paradigms under these conditions.

Imprecise domain information increases the likelihood of a match with precise ev-
idence. Thus the highly fuzzified domain knowledge base only eliminates the selected
object on three percent of the tests when the accuracy of the sensor is defined by
the medium variance. Increasing the variance, or equivalently decreasing the simu-
lated accuracy of the sensor, exacerbates the poor performance when the evidence is
considered precise.

The final two columns of Table 3 illustrate the discriminatory capabilities of using
precise evidence when the selected object receives support. The columns indicate
frequency at which the selected object receives level-3 support or less. With the
medium-uniform knowledge base, the selected object has level-3 support 87% of the
time when it is not completely eliminated. With the high-uniform knowledge base,
the corresponding level-3 support is 63%. These results show the expected relation-
ship that increasing the domain imprecision decreases the ability of the reasoning
paradigms to discriminate among the objects.

The level-3 support results of the tests using the probabilistic support are given in
Table 4. These show that adding imprecision to the evidential interpretation improves
the performance over that of an precise interpretation. The fuzzification allows the
evidence to overlap the domain knowledge representation so that the selected object
receives support. However, excessive imprecision weakens the ability of the paradigm
to focus on the selected individual. In all the tests except those with precise domain
knowledge and high inaccuracy, the tests in which medium evidential imprecision was
used outperformed both the precise and the high imprecision scenarios.
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Table 4: Effects of evidential imprecision

Level-3 Support
Medium Variance High Variance

Evidential Precise Medium High Precise Medium High
Interpretation KB KB KB KB KB KB
precise 1 76 73 1 18 52
medium 77 92 90 17 61 71
high 56 66 68 33 47 58

6.2 Sensor Accuracy

Inaccuracy measures the distance of the value returned by a sensor to the actual value
of the object being scrutinized. In the GCT, the degree of inaccuracy is determined
by the probability distribution used to generate the observation. An observation
concerning an attribute at is generated from a normal distribution centered at the
midpoint of the partial membership function defining the attribute at of the selected
object. As the variance of this normal distribution increases, the inaccuracy in the
observations also increases. Two levels of accuracy, medium variance and high vari-
ance, were used in this study. The associated probability distributions are given in
Section 5.2.

Increasing the inaccuracy has the same effect as reducing the precision in evi-
dence, it reduces the likelihood of the overlap of the focal set evidential distribution
with that of the domain information. When this occurs, the selected hypothesis
is assigned no support and is removed from further consideration by all reasoning
techniques. Table 5 gives the number of times the selected object was eliminated
in the indicated scenario. This value is the average over the four evidential support
generation techniques. Increasing the inaccuracy causes a greater number of tests
to reject the selected object. When the accuracy was determined by the medium
variance distribution, only once did the selected object fail to receive support in the
medium-uniform knowledge base and medium evidential interpretation case. This
grew to 25% of the tests with the greater inaccuracy. As with precise data, increas-
ing the imprecision in the domain knowledge mitigates the error and reduces the
elimination. The same phenomena occurs by increasing the evidential imprecision.
This expands the focal set of the evidential distribution increasing the likelihood of
a non-null intersection with the domain representation.

The accuracy also affects the level of support for the selected object. Increasing the
inaccuracy significantly decreases the number of times the selected hypothesis receives
level-3 support. This is exhibited by Table 4, which displays the level-3 support of the
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Table 5: Effects of inaccurate observations

Percent Eliminated
Medium Variance High Variance

Evidential Precise Medium High Precise Medium High
interpretation KB KB KB KB KB KB
precise 99 21 3 99 80 25
medium 20 1 1 80 25 5
high 8 1 1 55 10 3

probabilistic tests. For the medium-uniform knowledge base, decreasing the accuracy
reduces the average level-3 support from 92% to 61%. As the imprecision in the
evidential interpretation increases, the difference in the level-3 support for medium
variance and high variance are still significant but become smaller.

6.3 Imprecision of Domain Information

Imprecision in the representation of domain information is indicated by the breadth
of the partial membership functions defining the characteristics of the objects. This,
in turn, is determined by parameters of the bell shaped membership functions at, and
at 2 . Knowledge bases were built with precise, medium, and high imprecision to study
the effects of altering of domain precision on the effectiveness of support generation.
The parameters defining these knowledge bases are given in Section 5.1. The level-n
support for the precise knowledge bases are given in Appendix A in graphs

Precise-Uniform: Graphs 1, 2, 3, 16, 17, and 18.

Medium-Uniform: Graphs 4, 5, 6, 19, 20, and 21 are medium-uniform, and Graphs
10-15 are medium-normal-two-cluster and 25-30 are medium-normal-five-cluster.

High-Uniform: Graphs 7, 8, 9 22, 23, and 24.

Altering the precision of the domain representation has effects that are similar to
those observed when changing the evidential precision. The consequences of precise
domain knowledge has already been observed in the analysis of sensor accuracy and
precision. When the evidence is either precise or highly inaccurate, the likelihood
of obtaining an observation that does not support the selected is high. The selected
object is the assigned zero support and removed from consideration. Graphs I and
16, the combination of precise domain information and precise evidence, show the
nearly total elimination of the selected object.

Increasing the imprecision in the domain representations raises the ikelihood of
a partial match of the evidence with the membership function defining the attribute
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of the selected object. In graph 3, an exception, the observation and high eviden-

tial interpretation have compensated markedly for the precision of the knowledge

base. Retention using the medium-uniform knowledge base is improved over precise-
uniform. Graphs 4 and 7 show the effects of increasing the do"ia;n imprecision with

precise evidence. The rate at which the selected object is eliminated drops 'rom 99%
with precise knowledge repcesentation to 20% with medium and 2% with high.

The same trend occurs, but to a lesser degree, when the evidence is imprecise.

Combining precise domain knowledge with intermediate evidential interpretation and
low inaccuracy produces elimination rates of 16% and 25% (graphs 2 and 20). The

elimination is neglegible when the medium knowledge bases are employed. With
the higher sensor inaccuracy, elimination occurs with the medium knowledge bases.

The highly imprecise domain knowledge base is required to overcome the elimination
caused by the data.

The preceding observations indicate that the rate elimination can be improved
by decreasing the precision of the knowledge base. A fuzzification of the domain
knowledge, however, reduces the discriminatory capability. In the extreme case, we

would have a completely ambiguous knowledge base guaranteed to capture all objects.

Discrimination is quantified by the entropy of the support distribution. To illustrate
the reduction of the support, we consider the case with uniform knowledge base,
medium sensor inaccuracy, medium evidential interpretation (tests 2, 5, and 8) and
the probabilistic approach. The entropy for the precise knowledge base is 0.83. This

rises to 1.5 and 2.6 for the more imprecise knowledge.

6.4 Fuzzy Techniques

The analysis included two support generation techniques based on fuzzy reasoning.
These techniques differed in the initial phase of the support generation, the determi-

nation of compatibility of domain information with evidence. Sup-min composition

and fuzzy expected value operator (Section 3.1) are used to build the distribution

[1(e).
Sup-min composition chooses the maximal pointwise agreement between the do-

main information and the evidence. With the expected-value operator, the compati-
bility between the evidence a d domain information is determined by the overlap of
their respective possibility distributions.

Regardless of the inaccuracy of the observations, for precise evidential interpre-
tations, the test results show that these two techniques perform identically. Since
a precise evidential interpretation of an observation v produces the possibility dis-

tribution 1/v, the expected-value operator computes the same compatibility as the
sup-min composition.

In all tests with medium and high evidential interpretations, the expected-value
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technique produces higher level-3 support. Increasing the imprecision in the evidential
interpretation increases the likelihood of overlap of the focal elements in the evidential

possibility distribution with that of the domain information. Since the sup-min uses
the possibility value of the single point in the intersection of the focal points of the
two distributions, it ignores the support assigned by the evidence that does not agree
with the domain information. The expected-value method is one of averaging, that

is, it incorporates the entire focal set of the evidence and tends to produce more

discriminatory information.
The normalized entropies for expected-value are also lower than those for the

sup-min. As inaccuracy increases in the observations, the spread between the en-
tropy measures widens. Thus, the support generated by expected value is less evenly

distributed, i.e., less ambiguous.
An exception to the superiority of the expected-value technique occurs for precise

domain information and the high evidential interpretation. For these test runs sup-

min produces a higher level-3 support but also a higher entropy. Since precise domain
information for an attribute value is specified by a partial membership function 1/v,
the intersection of the domain information and the evidential possibility distribution
contains at most a single focal element. Scaling by the sigma-count in the expected-
operator reduces the compatibility measure between the two distributions. But the
effects of this reduction do not ,ppear until the high evidential interpretation is used.

6.5 Probabilistic Techniques

The remaining two reasoning paradigms generated support by probabilistic tech-

niques. Updating in the D-S system used Dempster's rule; the strictly probabilistic
analysis used Bayes' rule. With respect to level-3 support and rate of selected object
elimination, the Dempster-Shafer technique outperformed the probabilistic in the test
runs for high evidential imprecision regardless of the accuracy. It had the lower en-
tropy measure for the test runs when there was medium variance in the accuracy of
the observations. With high variance, however, the probabilistic had nearly equivalent
entropy for the precise domain information and the high evidential interpretation.

The only test runs in which the probabilistic technique performed better with
respect to the entropy measure was when the clustered domain knowledge bases were
used. For high variance tests, the probabilistic approach has lower entropy values.

For the non-clustered domain knowledge with high sensor inaccuracy, the entropy

measures are nearly identical when either the domain information or evidential inter-
pretation is precise or when both the domain information and evidential interpretation
is medium.

An important consideration between the probabilistic techniques is the resou:ces
required for the generation of support. The D-S theory, using a set based approach,
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has exponential complexity with respect to the size of the focal sets. It is for this rea-
son that there are no D-S results for the high imprecision domain knowledge with the
highly imprecise evidential interpretation. This combination produces a large focal
set in the evidential basic probability assignment. Thus in large or imprecise domains,
the D-S approach is impractical without employing further simplifying assumptions
on the relationship between evidence and domain knowledge.

6.6 U-uncertainty

The discussion in the preceding section used entropy to measure the uncertainty in the

final assignment of support to the domain elements. Historically, entropy is a measure
designed for analyzing probability distributions. Since the fuzzy reasoning techniques
produce possibility distributions, the uncertainty in the results are also analyzed
using the corresponding possibilistic measure, U-uncertainty [5]. U-uncertainty is a
measure of nonspecificity derived from a generalization of the Hartley information
measure. U-uncertainty, which measures the uncertainty associated with a choice
among a specific number of alternatives, is obtained by

U(r) = E(Pi- p,+1) log2 i
i=1

where r is a normal possibility distribution with n focal elements. The distribution
is assumed to be sorted in descending order of possibility values

11.0 = P, >! P2 >.. Pi > Pi+, 1 . P. >! 0},

where Pn+i = 0 by convention.
The minimum of U(r) is zero and occurs when exactly one component of r is

assigned possibility 1 and the value assigned to all of the remaining components is
0. That is, when the possibility distribution uniquely determines an object. The
maximum of U(r) occurs when all elements have po3sibility 1, in which case

U(r) = log2 n

where n is the size of the focal set of the distribution.
The U-uncertainty is computed using a normalized possibility distribution of the

final support list. The measure is obtained from the probability distributions created
by the probabilistic approach and the plausibility values generated by the Dempster-
Shafer technique by linearly scaling the distributions so that they have a maximum
value of one. The average and standard deviation were calculated for each test case.
The result of a single iteration was used for average calculation only when the pre-
selected object for identification was given nonzero support.
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Table 6: Nonspecificity statistics U for reasoning techniques

Sup-Min Exp Value Prob'c D-S
Case U _- F SFISU -

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 0.71 0.72 0.69 0.69 0.60 0.64 0.39 0.54
3 1.49 0.79 1.77 0.84 1.33 0.73 1.02 0.84
4 0.71 0.72 0.71 0.72 0.51 0.62 0.54 0.62
5 1.95 0.81 1.21 0.70 0.83 0.57 0.68 0.59
6 2.39 0.62 1.83 0.64 1.36 0.53 0.94 0.63
7 2.14 0.65 2.14 0.65 1.57 0.77 1.62 0.72
8 2.91 0.56 2.29 0.57 1.56 0.67 1.39 0.62
9 3.64 0.52 2.58 0.50 1.55 0.55 1.53 0.63

Table 6 shows the results of this uncertainty measure for the first nine test cases.

The U-uncertainty is zero for case 1 since only one iteration did not eliminate the

selected object. In this case, the selected object was identified with certainty.

The trends in the U-uncertainty follow those observed in the entropy results. The

Dempster-Shafer technique generally has the lowest values of the four techniques. The
results of the Demspter-Shafer and probabilistic analysis show little difference with the
precise evidential interpretations, cases 1, 4, and 7. The probabilistic technique has

the next lowest U-uncertainty values but the values for the precise domain knowledge
cases, 1 through 3 are not much lower than those for the other two techniques. For
the probabilistic technique with high imprecision domain knowledge bases, cases 7-9,

the U-uncertainty values are approximately equal regardless of the imprecision in the

evidential interpretation. The U-uncertainty results indicate that the expected value
technique has a greater discriminatory capability than the sup-min evaluation.

6.7 Comparison

The four reasoning techniques have been tested against various levels of sensor accu-

racy and imprecision in domain knowledge and evidential interpretation. Altogether

thirty scenarios were examined, with widely differing effectiveness of the techniques
as a function of the parameters. For a given scenario, however, the level-n graphs
often are similar. Even in these cases, the entropy provides a method of distinguishing
between the techniques.

The Dempster-Shafer technique, the fuzzy expected value technique, and the fuzzy
sup-min technique produced level-n vs. frequency graphs of similar shape, displaced
from one another roughly by the differences in their one percent ranking frequencies.
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The curves that resulted from the three techniques are similarly convex and seldom
intersect. Hence, the technique that had the best level-1 frequency was often the best
technique for that scenario.

Two features incorporated into the GCT simulations may have advantageously
effected the performance of the probabilistic techniques. The Dempster-Shafer com-
bination rule requires that the basic probability assignments generated from the obser-
vations be independent. The Bayesian approach assumed conditional independence of
evidence given the domain information. Since observations were generated from ran-
domly selected objects, these assumptions were satisfied in the test domain knowledge
bases. The support updating rule of the fuzzy strategies is a conservative approach.
The use of the minimum operator is equivalent to assuming maximal correlation. In
most problem domains, evidence is neither independent nor conditionally indepen-
dent. In domains in which independence is present, the conservative updating rule
of the fuzzy approach may inhibit the reduction of support assigned to objects that
only partially match the evidence.

The domain knowledge bases constructed for this study also assumed no corre-
lation between the values of the attributes for domain objects. This is the result of
choosing the midpoints of the attributes defining the domain objects independently
from random distributions. Lack of correlation between attributes is also rare in
naturally occurring problem domains.

When comparing support generated for the selected object, the probabilistic tech-
niques (D-S and Bayesian) preformed marginally better than the expected value fuzzy
approach. Because of the conservative support generation technique, the sup-min
composition produced lower support levels in the baseline domains. This was espe-
cially apparent in graph 16, where the level-3 support is only 7%.

The entropy, however, can still discriminate between the certainty in the support
distributions. The probabilistic techniques have lower entropy values than the fuzzy.
This indicates a more precise identification by those algorithms. This, again, is at-
tributable to the conservative support updating in the fuzzy techniques. The proxim-
ity of domain objects affects the certainty of the support. In the uniform knowledge
bases, D-S produces results with the least entropy. In the clustered domains, this
difference disappears and is reversed in several cases.

The degree of clustering also affects the certainty of the result. The 2-cluster
knowledge bases have higher entropy than the corresponding uniform knowledge
bases. The proximity of a large number of similar domain objects spreads the sup-
port among them, which increases the uncertainty. The 5-cluster reverses this trend.
The larger number of clusters insures that 80% of the objects are separated from the
selected object. Thus the support is spread over fewer objects.

Although the Dempster-Shafer technique appears to be one of the most effective
procedures, it is also the most resource intensive. For the baseline scenario, medium
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domain imprecision, medium evidential interpretation, and medium sensor accuracy,
the sup-min evaluation required 8,930 seconds, the expected value evaluation required
8,730 seconds, and the D-S 37,342 seconds. Dempster's rule, the updating procedure
for the D-S approach is an exponential algorithm. The fuzzy techniques are both
linear in the size of the frame of discernment. The Bayesian probabilistic approach,
utilizing matrix operations, is an n2 algorithm in the size of the domain.
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7 Evidential Refinement

The combination of medium domain knowledge base and the mediumn evidential inter-
pretation resulted in consistently better level-n values than the corresponding values
under precise and highly imprecise evidential interpretations. These results indicate
that there may be a degree of evidential imprecision that optimizes the identification
process. To further investigate the effect of evidential interpretation on the level-
n support and entropy values, two additional evidential interpretations were con-
structed. These evidential interpretations were constructed so that the U-uncertainty
of the interpretations (the bell-shaped distributions) lie between the U-uncertainties
of the medium and high distributions for the first two attributes. Table 7 shows the
values for the a and P3 parameters for the bell-shaped distribution along with their
corresponding U-uncertainty measures for the five evidential interpretations.

7.1 Level-n Support

The level-n support produced by the five evidential interpretations are summarized
in Tables 8-15. These tables are given in pairs based on the reasoning paradigm
employed. The first table in the pair has results using medium variance to generate
observations and the second in the pair is with high variance.

For the sup-min technique, the best level-n results were obtained with the medium-
2 evidential interpretation regardless of the precision in the domain knowledge base
and the variance in observation generation. For the expected value technique, the
best level-n results varied depending upon the precision of the domain knowledge
base and the variance in the observation generation. With medium variance in the
accuracy of the sensor data and imprecise domain data, the three medium eviden-
tial interpretations produced similar results. Each of these produced level-n support
superior to both the high and precise evidential interpretations. Under the same con-
ditions except with precise domain knowledge, the medium-2 evidential interpretation
demonstrated superior discriminatory capabilities. The same pattern of behavior oc-
curred when the expected value technique was used with highly inaccurate sensor
data.

The probabilistic technique for medium variance and the precise domain knowl-
edge had best level-n results with the medium evidential interpretation. For level-ns
of 5 or more, the medium-1 interpretation provided the best results. Adding impreci-
sion to the domain knowledge, the three medium evidential interpretations produced
comparable results. With high variance, the medium-1 interpretation performed the
best regardless of the imprecision in the domain knowledge base.

The optimum evidential interpretation for the Dempster-Shafer technique was also
dependent on the imprecision in the domain knowledge base. For the medium vari-
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Table 7: Evidential interpretations

Evidential Attribute 1 Attribute 2
Interpretation a #f3 U-uncertainty a / U-uncertainty
Precise 0 1 0.00 0 1 0.00
Medium 5 10 3.89 0 2 0.79
Medium-1 10 10 4.25 1 2 1.58
Medium-2 5 15 4.29 0 3 1.40
High 10 15 4.63 T 3 1.95

ance and the precise domain knowledge base, the medium-2 evidential interpretation
produced superior level-n values. For the medium precision domain knowledge base
with medium variance the three medium interpretations and the high interpretation
were comparable. This pattern also occurred with the high variance analysis.
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Table 8: Level-n rankings for sup-min reasoning technique

Sup-Min, Medium Variance
Evidential Interpretation

Precise Medium Medium-1 Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 1 44 45 23 28 14 54 37 33 14
2 61 64 42 51 39 78 64 61 39
3 72 74 54 70 64 89 74 81 64
4 78 80 66 76 77 95 84 88 78
5 80 82 72 82 85 96 89 94 86
6 81 83 78 85 93 98 95 97 93
7 85 86 96 98 97 96
8 92 97 99 98 97
9 94 98 98
10 95 99 99

Table 9: Level-n rankings for sup-min reasoning technique

Sup-Min, High Variance
Ii ___,vidential Interpretation

t_ Precise f Medium Medium-1 Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 8 9 13 5 13 18 20 13 9
2 15 16 31 16 37 39 43 33 28
3 16 17 44 19 58 44 63 43 56
4 17 18 50 21 67 49 77 49 60
5 17 18 59 21 71 52 79 52 67
6 18 19 66 22 74 54 84 54 72
7 74 81 54 91 54 75
8 74 81 54 91 54 78
9 75 81 54 91 54 80
10 76 82 55 92 55 81
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Table 10: Level-n rankings for expected-value reasoning technique

Expected-Value, Medium Variance
Evidential Interpretation

Precise Medium Medium-1 Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 1 44 39 53 28 50 30 51 14 44
2 61 65 76 51 75 62 76 43 71
3 72 76 90 70 90 76 90 61 88
4 78 81 95 76 95 92 95 71 93
5 80 81 97 82 97 95 96 81 96
6 81 83 99 85 99 96 99 90 99
7 86 97 94
8 98 96
9 98

Table 11: Level-n rankings for expected-value reasoning technique

Expected-Value, High Variance
Evidential Interpretation

Precise Medium Medium-1 Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 8 9 22 5 21 19 20 11 20
2 15 17 44 16 44 33 46 26 45
3 16 18 55 19 58 44 67 35 67
4 17 19 64 21 67 51 77 44 77
5 17 67 21 71 53 83 51 83
6 18 73 22 78 55 90 53 90
7 75 81 93 54 94
8 75 81 93 54 94
9 75 81 1 94 54 94

10 76 82 5 1195 55 95
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Table 12: Level-n rankings for probabilistic reasoning technique

Probabilistic, Medium Variance
Evidential Interpretation

Precise Medium Medium-1 Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 0 55 48 60 29 49 34 49 10 23
2 69 69 82 60 75 62 78 37 45
3 77 78 91 78 86 76 89 58 68
4 80 81 96 87 93 81 96 69 79
5 80 82 97 92 95 83 96 79 85
6 81 83 99 95 98 86 99 83 91
7 96 99 87 95
8 98 88 97
9 90 98
10 11 11 98

Table 13: Level-n rankings for probabilistic reasoning technique

Probabilistic, High Variance
Evidential Interpretation

Precise Medium Medium-1 Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 0 10 13 33 20 35 6 32 11 22
2 15 18 51 39 52 17 53 25 42
3 17 18 62 48 67 18 63 34 54
4 17 19 69 52 79 20 67 35 67
5 18 72 53 83 11 37 72
6 74 54 88 75 38 74
7 75 54 90 _ 76 39 78
8 76 54 92 77 40 82
9 54 92 83
10 55 93 84
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Table 14: Level-n rankings for Dempster-Shafer reasoning technique

Dempster- Shafer, Medium Variance
Evidential Interpretation

Precise Medium Medium-1 Medium-2 High

n-level PDB MDB PDB MDB PDB MDB PDB MDB PDB MDB

1 1 50 55 66 28 62 61 61 33 62
2 67 69 85 51 86 83 86 61 82
3 76 79 96 70 96 91 96 81 95
4 80 81 97 76 97 97 97 88 96
5 80 82 98 82 98 98 98 94 98
6 81 99 85 99 99 97 99
7 86 97
8 98

Table 15: Level-n rankings for Dempster-Shafer reasoning technique

Dempster-Shafer, High Variance
Evidential Inte-pretation

Precise Medium Medium-1I Medium-2 High
n-level PDB MDB PDB MDB PDB MDB PDB MDB PDt, MDB

1 10 12 33 5 33 19 35 15 137
2 16 17 54 16 54 29 65 36 63
3 17 18 62 19 70 37 78 47 80
4 18 19 68 21 74 39 85 49 85

5 72 21 78 40 89 52 87
6 75 22 80 42 93 55 93

7 76 82 94 94
8 95 95
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7.2 Entropy Analysis

For the precise domain knowledge base, Table 16 gives the entropy measures for the
medium-1 (MI) and medium-2 (M2) evidential interpretations along with the precise
(P), medium (M) and high (H) interpretations. The first set of five rows are the
results for the tests with the medium sensor accuracy and the second set is for high
inaccuracy. Table 17 displays the entropy for the results using the medium domain
knowledge base. The high imprecision domain knowledge base was not used because
of the processing time required for the test runs.

For the precise domain knowledge (Table 16), the entropy values for the sup-min
and expected value techniques are comparable for all the evidential interpretations.
As the level of imprecision increases in the evidential interpretation so does the the
entropy measure for these two techniques. This differs from the level-n findings in
which the medium evidential interpretations produced superior results. Good level-n
results accompanied by high entropy indicate that the selected object is receiving
support, but that the breadth of the support distribution is large. That is, the fuzzy
techniques are not effective in reducing support for fringe objects.

The results of the two probabilistic techniques provide additional support for the
assertion that there may be an optimal evidential interpretation. Both the D-S and
probabilistic method produce minimal entropy results with the medium evidential
interpretations rather than with the precise or highly imprecise evidence.

Examining the level-n support and the entropy reinforces our observation that
the effectiveness of identification process depends upon the precision in the evidential
interpretation. Moreover, it is not highly precise data that enhances the procedure,
but rather information with a sufficient degree of imprecision to ensure the capture
of the selected object in the process. The imprecision needed varies with the support
generation paradigm.

7.3 General Conclusions and Continuing Work

The report presents the results of an analysis of several paradigms for generating
support in sensor-based evidential reasoning problem domains. Within the constraints
of the simulations developed and tested by the GCT, expectation based probabilistic
analysis, the Dempster-Shafer theory, and fuzzy techniques using expectation as a
compatibility measure produced comparable results. There were, however, certain
scenarios in which there was considerable difference among these techniques.

The independence of the evidence and the lack of correlation between the at-
tributes in the domain descriptions incorporated into the GCT evaluation favor the
techniques whose updating rule assumes these conditions. Further study should at-
tempt to determine the effects of independence assumptions on the generation of
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Table 16: Mean entropies and their standard deviations for Precise DB

Precise DB
Interpre- Sup-Min Exp Value Prob'c D-S

tation E S E T I S S-
P 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
M 0.86 0.77 0.84 0.76 0.83 0.78 0.57 0.61
M1 1.04 0.86 1.04 0.86 0.91 0.82 1.04 0.86
M2 1.73 0.78 1.78 0.80 1.84 0.75 0.94 0.69
H 1.91 0.79 1.94 0.80 1.58 0.84 1.28 0.79

P 0.0 0.0 1 0.0 0.0 0.0 0.0 0.0 0.0
M 0.85 0.70110.82 0.70110.61 0.6810.51 0.59 J
M1 1.02 0.71 1.02 0.71 0.71 0.68 1.02 0.71
M2 1.47 0.80 1.47 0.82 1.29 0.84 0.95 0.66
H 1.57 0.84 1.58 0.85 1.12 0.95 1.10 0.78

Table 17: Mean entropies and their standard deviations for Medium DB

Medium DB
Interpre- Sup-Min Exp Value Prob'c D-S

tation E sr T Sy T SK T I S7
P 0.87 0.77 0.87 0.77 0.73 0.71 0.74 0.72
M 2.32 0.71 1.93 0.73 1.55 0.72 1.28 0.77
M1 2.43 0.68 2.19 0.70 2.23 0.63 1.49 0.77
M2 2.99 0.59 2.51 0.61 1.83 0.72 1.61 0.76
H 3.09 0.58 2.73 0.59 2.43 0.68 1.79 0.75

P 0.91 0.69 0.91 0.69 0.56 0.69 0.76 0.69
M 1.88 0.79 1.56 0.80 1.17 0.71 1.20 0.73
M1 1.95 0.78 1.78 0.78 1.90 0.72 1.39 0.71
M2 2.53 0.65 2.09 0.69 1.38 0.84 1.54 0.71
H _ 2.62 0.67 2.25 0.70 1.92 0.88 1.66 0.73
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support.
The results indicated a strong relationship between the effectiveness of the rea-

soning paradigm and the precision of both the domain knowledge and the evidence.
There appears to be an optimal combination of these two parameters that depends
upon accuracy of the sensor. With the domain imprecisio-i fixed, processing precise
or highly imprecise evidence produces poorer results than an intermediate precision.
Determination of a quantitative relation between these two parameters may enhance
the effectiveness of the evidential support algorithms.
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A Level-n Support Data

This appendix consists of graphs showing the level of support that resulted from the

test runs discussed in Sections 5 and 6. The level of support vs. its frequency is

plotted for each reasoning method. Each graph on the page shows the performance of

the four reasoning methods. The Dempster-Shafer curve is shown by a solid line, the

probabilistic curve by a dotted line, the fuzzy evaluation using sup-min composition

by a dashed line, and the fuzzy evaluation using the expected-value operator by a dot-

and-dashed line. The scenario represented by a graph is indicated by the number to

its left. These numbers refer to the descriptions in Table 1. There is also a description

on the graph itself. In graphs 9, 12, 15, and 24, with high imprecision in both the

domain data and the evidential interpretation, the Dempster-Shafer data were not

collected due to the CPU time required by the test run.

Each page contains three graphs with the same domain knowledge base. The
three graphs are obtained from varying the evidential precision. The top graph gives

the results when using the precise evidential interpretation. The middle graph uses

the medium evidential interpretation. The bottom graph uses the high evidential

interpretation. The first five pages give the results using the medium variance for the
sensor accuracy. In the remaining five pages, the graphs are from test runs with high

variance.
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B Radar Knowledge Base

The frame for the representation of emitters was given in Example 7. The eiritter

knowledge base consists of the following six emitters. These have been provided for

testing purposes only and do not portray actual emitters.

Emitter type 1

Radar Frequency (RF) Details
(a) The possible limits are 2.30 - 3.47 GHz.

The probable operating limits are 2.54 - 3.24 GHz.
The most observed band limits are 2.77 - 3.00 GHz.

(b) The RF is nominally constant.

Pulse Repetition Interval (PRI) Details
(a) The radar operates in either a constant PRI mode or a

2-element, 2-position stagger mode.
(b) In constant PRI mode, PRI limits are

(i) 90.96 - 101.27 psec

(ii) 116.87 - 133.62 psec
(iii) 179.19 - 199.22 pIsec

(c) In staggered mode, the PRI elements are
(i) element 1: 66.42 - 71.11 psec
(ii) element 2:136.36 - 157.57 jsec

or
(i) element 1: 74.76 - 107.90 psec

(ii) element 2: 191.08 - 194.09 psec

Pulse Width (PW) Details

(a) The liiuts are 0.2 - 0.3 /sec.

Scan Details
(a) The scan is either conical (CON) or bidirectional sector (I31)S).
(b) The conical scan period is between 0.04 and 0.06 sec.

(c) The bidirectional scan period lies between 2.0 and 4.0 sec.
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Emitter type 2

Radar Frequency (RF) Details
(a) The possible limits are 2.38 - 2.62 GHz.

The probable band is 2.43 - 2.57 GHz.

The most likely band is 2.48 - 2.52 GHz.
(b) Manual tuning of RF to any value within range is possible.

Transmitter is usually blanked for 10 to 20 seconds at this

time but has been reported to be free running.

Pulse Repetition Interval (PRI) Details

(a) The PRI is nominally constant.

(b) There are five ranges as follows:

(i) 77.72 - 84.15 jsec

(ii) 89.98 - 119.53 tsec
(iii) 120.03 - 120.85 /sec
(iv) 138.61 - 150.07 1 sec
(v) 170.05 - 179.91 psec

Pulse Width (PW) Details

(a) The limits are 0.2 - 0.5 jsec.

Scan Details
(a) The scan is unidirectional sector (UDS).

(b) The scan period is between 0.5 and 1.5 sec.

I
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Emitter type 3

Radar Frequency (RF) Details
(a) The possible limits are 2.24 - 3.71 GHz.

The probable band is 2.54 - 3.42 GHz.

The most likely band is 2.83 - 3.13 GHz.
Ad (b) The RF is nominally constant.

(b) Frequency separation among co-located emitters is
typically 30 to 80 MHz.

Pulse Repetition Interval (PRI) Details
(a) The PRI is nominally constant.

(b) The PRI limits are divided into three ranges as follows
(i) 55.39 - 88.47 psec

(ii) 125.03 - 130.28 psec

(iii) 164.19 - 173.20 psec

Pulse Width (PW) Details
(a) The limits are 0.3 - 0.8 psec.

Scan Details
(a) The scan is bidirectional sector (BDS).

(b) The conica! scan period is between 0.04 and 0.06 sec.
(c) The scan period lies between 0.2 and 0.7 sec.
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Emitter type 4

Radar Frequency (RF) Details

(a) The possible limits are 2.08 - 2.46 GHz.

The most likely band is 2.23 - 2.30 GHz.

(b) The RF is nominally constant.

Pulse Repetition Interval (PRI) Details

(a) The PRI is nominally constant.
(b) The PRI limits are divided into four ranges as follows:

(i) 79.96 - 97.92 psec

(ii) 133.79 - 143.40 psec

(iii) 150.81 - 181.63 psec
(iv) 212.04 - 223.32 psec

Pulse Width (PW) Details
(a) The limits are 0.5 - 1.0 psec.

Scan Details
(a) The scan is either unidirectional sector (UDS) or conical (CON).

(b) For both types, the scan period is between 0.05 and 0.06 sec.
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Emitter type 5

Radar Frequency (RIF) )etails
(a) The possible limits are 2.81 - 3.97 GIlz.

The probable operating limits are 3.04 - 3.74 GHz.

The most likely band is 3.27 - 3.51 GHz.
(b) Switching among three preset values nominally 20 to 50 MHz

apart is possible. Switching time is reported to be 1 to 2

sec. Transmitter is blanked during switching.

Pulse Repetition Interval (PRI) Details

(a) The radar operates in a 2-element, 2-position stagger mode.

(b) The PRI elements are

(i) element 1: 53.25 - 63.34 pisec

(ii) element 2: 137.70 - 156.55 /sec

or
(i) element 1: 117.04 - 122.80 psec

(ii) element 2: 63.70 - 110.12 jisec

Pulse Width (PW) Details

(a) The limits are 0.3 - 0.7 psec.

Scan Details

(a) The scan is conical (CON).
(b) The scan period is between 0.05 and 0.01 sec.
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Emitter type 6

Radar Frequency (RF) Details

(a) The possible limits are 2..55 - 3.27 GIz.
(b) The RF is nominally constant.

Pulse Repetition Interval (PRI) Details

(a) The PRI is normally staggered but may be fixed.
(b) The PRI limits are 100.00-392.00 psec.

(c) In staggered mode, the difference between elements is

3.47 psec.
Pulse Width (PW) Details
(a) The limits are 0.15 - 0.35 psec.

Scan Details
(a) The scan is bidirectional sector (BDS).
(b) The scan period is between 5 and 10 sec.

(c) The bidirectional scan period lies between 2.0 and 4.0 sec.
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